AARUPADAI VEEDU INSTITUTE OF TECHNOLOGY, PAIYANOOR

&

VINAYAKA MISSION'S KIRUPANANDA VARIYAR ENGINEERING COLLEGE, SALEM

(Constituent Colleges of Vinayaka Mission's Research Foundation Deemed to be University)

AICTE APPROVED & NAAC Accredited

Faculty of Engineering and Technology Department of Mechanical Engineering Programme : B.E/B.Tech - Mechanical Engineering Part Time (3 1/2 Years) STRUCTURED CHOICE BASED CREDIT SYSTEM (SCBCS) Curriculum & Syllabus (Semester I to VII)

(Semester 1 to VII)

Regulations 2017

AARUPADAI VEEDU INSTITUTE OF TECHNOLOGY, PAIYANOOR, CHENNAI

&

VINAYAKA MISSION'S KIRUPANANDA VARIYAR ENGINEERING COLLEGE, SALEM

Department of Mechanical Engineering

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO.1. Design, analyze & fabricate, maintain and improve mechanical engineering systems that are technically sound, economically feasible and socially acceptable to enhance quality of life.

PEO.2. Apply modern computational, analytical, simulation tools and techniques to address the challenges faced in mechanical and allied engineering streams.

PEO.3. Communicate effectively using innovative tools and demonstrate leadership & entrepreneurial skills.

PEO.4. Exhibit professionalism, ethical attitude, team spirit and pursue lifelong learning to achieve career and organizational goals.

PROGRAM SPECIFIC OUTCOMES (PSOs)

To achieve the mission of the program, Mechanical Engineering graduates will be able:

PSO1. To work independently as well as in team to formulate, design, execute solutions for engineering problems and also analyze, synthesize technical data for application to product, process, system design & development

PSO2. To understand & contribute towards social, environmental issues, following professional ethics and codes of conduct and embrace lifelong learning for continuous improvement

PSO3. To develop expertise towards use of modern engineering tools, careers in industries and research and demonstrate entrepreneurial skill

Department of Mechanical Engineering

PROGRAM OUTCOMES

Engineering Graduates will be able to:

- 1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

- 10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **12. Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Sl. No.	Category of Courses	Credits to be earned Min – Max.
	A.Foundation Courses (FC)	12 - 18
01	i. Humanities and Sciences (English and Management Courses)	3 - 6
	ii. Basic Sciences (Maths, Physics and Chemistry Courses)	9–12
02	B. Core courses (CC)	77
	C. Elective Courses (EC)	12 - 18
03	i. Programme Specific (Class Room or Online)	9 - 12
	ii. Open Elective (Class Room or Online)	3 - 6
04	D. Project	6
Mi	nimum Credits to be earned for awarding of Degree	107
Credit	s earned in categories A to D would be mentioned in will be used for overall CGPA Calculation	

Credit Requirement for Course Categories

B.E/B.TECH. - MECHANICAL ENGINEERING - SEMESTER I TO VIII

CATEGORY A – FOUNDATION COURSES - HSS, BS AND ES COURSES - CREDITS (12 - 18)

(i) HUMANITIES AND SCIENCES (ENGLISH AND MANAGEMENT SUBJECTS) - CREDITS (3 – 6)

S.No	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	т	Р	с	PREREQUISITE
1	17EGHS01	TECHNICAL ENGLISH	ENGLISH	FC (HSS)	3	0	0	3	NIL
2	17EGHS02	BUSINESS ENGLISH	ENGLISH	FC (HSS)	3	0	0	3	NIL
3	17MBHS04	TOTAL QUALITY MANAGEMENT	MANAGEMENT	FC (HSS)	3	0	0	3	NIL
4	17MBHS01	ENGINEERING STARTUPS AND ENTREPRENEURIAL MANAGEMENT	MANAGEMENT	FC (HSS)	3	0	0	3	NIL
5	17MBHS07	PROFESSIONAL ETHICS AND HUMAN VALUES	MANAGEMENT	FC (HSS)	3	0	0	3	NIL
6	17MBHS08	PROJECT MANAGEMENT FOR ENGINEERING BUSINESS AND TECHNOLOGY	MANAGEMENT	FC (HSS)	3	0	0	3	NIL
7	17MBHS09	INTELLECTUAL PROPERTY RIGHTS & ALTERNATE DISPUTES RESOLUTIONS	MANAGEMENT	FC (HSS)	3	0	0	3	NIL

(ii) BASIC SCIENCES (MATHS, PHYSICS AND CHEMISTRY SUBJECTS) - CREDITS (9 – 12)

S.No	CODE	COURSE	OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE
1	17MABS01	ENGINEERING MATHEMATICS	MATHEMATICS	FC (BS)	2	2	0	3	NIL
2	17PCBS02	PHYSICAL SCIENCES	PHYSICS/CHEMISTRY	FC (BS)	4	0	0	4	NIL
3	17PHBS05	SMART MATERIALS	PHYSICS	FC (BS)	3	0	0	3	NIL

4	17CHBS01	ENVIRONMENTAL SCIENCE AND ENGINEERING	CHEMISTRY	FC (BS)	3	0	0	3	NIL
5	17PCBS81	PHYSICAL SCIENCES LAB	PHYSICS/CHEMISTRY	FC (BS)	0	0	4	2	NIL
6	17CHBS04	INDUSTRIAL MATERIALS	CHEMISTRY	FC (BS)	3	0	0	3	NIL
7	17MABS04	MATHEMATICS FOR MECHANICAL SCIENCES	MATHEMATICS	FC (BS)	2	2	0	3	ENGINEERING MATHEMATICS
8	17MABS11	NUMERICAL METHODS FOR MECHANICAL SCIENCES	MATHEMATICS	FC (BS)	3	2	0	3	MATHEMATICS FOR MECHANICAL SCIENCES
9	17MABS21	RESOURCE MANAGEMENT TECHNIQUE	MATHEMATICS	FC (BS)	2	2	0	3	NIL
10	17MABS20	PROBABILITY AND STATISTICS	MATHEMATICS	FC (BS)	2	2	0	3	NIL
11	17PHBS06	ENERGY PHYSICS	PHYSICS	FC (BS)	3	0	0	3	NIL
12	17PHBS07	SPACE SCIENCE	PHYSICS	FC (BS)	3	0	0	3	NIL
13	17PHBS08	FUNDAMENTALS OF NANO SCIENCE	PHYSICS	FC (BS)	3	0	0	3	NIL

	C	CATEGORY B – CORE COU	JRSES RELEVA	ANT TO THE PR	OGI	RAM	ME	· CF	REDITS (77)
S.No	CODE	COURSE	OFFERING	CATEGORY	L	Т	Р	С	PREREQUISITE
1	17MECC02	ENGINEERING THERMODYNAMICS	MECH	CC	2	1	0	3	NIL
2	17MECC03	ENGINEERING MECHANICS	MECH	CC	2	1	0	3	NIL
3	17CVCC34	FLUID MECHANICS AND MACHINERY	CIVIL	CC	3	0	0	3	NIL
4	17CVCC33	STRENGTH OF MATERIALS	CIVIL	CC	3	0	0	3	ENGINEERING MECHANICS
5	17MECC05	MECHANICAL BEHAVIOUR OF MATERIALS AND METALLURGY	MECH	CC	3	0	0	3	NIL
6	17MECC06	KINEMATICS OF MACHINES	MECH	CC	3	0	0	3	ENGINEERING MECHANICS
7	17MECC07	THERMAL ENGINEERING	MECH	CC	2	1	0	3	ENGINEERING THERMODYNAMICS
8	17MECC08	DYNAMICS OF MACHINES	MECH	CC	2	1	0	3	KINEMATICS OF MACHINES
9	17MECC09	DESIGN OF MACHINE ELEMENTS	MECH	CC	2	1	0	3	STRENGTH OF MATERIALS
10	17MECC10	ENGINEERING METROLOGY AND MEASUREMENTS	MECH	CC	3	0	0	3	NIL
11	17MECC11	GAS DYNAMICS AND JET PROPULSION	MECH	CC	2	1	0	3	ENGINEERING THERMODYNAMICS
12	17MECC12	COMPUTER INTEGRATED MANUFACTURING	MECH	CC	3	0	0	3	NIL
13	17MECC13	DESIGN OF TRANSMISSION SYSTEMS	MECH	CC	2	1	0	3	DESIGN OF MACHINE ELEMENTS
14	17MECC14	HEAT AND MASS TRANSFER	MECH	CC	2	1	0	3	ENGINEERING THERMODYNAMICS
15	17MECC15	FINITE ELEMENT ANALYSIS	MECH	CC	2	1	0	3	STRENGTH OF MATERIALS
16	17MECC16	INDUSTRIAL AUTOMATION	MECH	CC	3	0	0	3	NIL
17	17MECC17	AUTOMOTIVE ENGINEERING	MECH	CC	3	0	0	3	NIL

B.E/B.TECH. – MECHANICAL ENGINEERING - SEMESTER I TO VII

18	17MECC18	MANUFACTURING ENGINEERING	MECH	CC	3	0	0	3	NIL
19	17MECC20	UNCONVENTIONAL MANUFACTURING PROCESS	MECH	CC	3	0	0	3	NIL
20	17MECC82	MACHINE DRAWING LAB	MECH	CC	1	0	4	2	NIL
21	17MECC84	METALLURGY LAB	MECH	CC	0	0	4	2	NIL
22	17MECC85	ENGINE TESTING LAB	MECH	CC	0	0	4	2	NIL
23	17MECC86	DYNAMICS & METROLOGY LAB	MECH	CC	0	0	4	2	NIL
24	17MECC87	AUTOMOBILE ENGINEERING LAB	MECH	CC	0	0	4	2	NIL
25	17MECC88	COMPUTER INTEGRATED MANUFACTURING LAB	MECH	CC	0	0	4	2	NIL
26	17MECC89	HEAT TRANSFER LAB	MECH	CC	0	0	4	2	NIL
27	17MECC90	FINITE ELEMENT ANALYSIS LAB	MECH	CC	0	0	4	2	NIL
28	17MECC91	INDUSTRIAL AUTOMATION LAB	MECH	СС	0	0	4	2	NIL
29	17MECC94	MANUFACTURING ENGINEERING LAB	MECH	CC	0	0	4	2	NIL

B.E/B.TECH. – MECHANICAL ENGINEERING - SEMESTER I TO VIII DETAILS OF ELECTIVE COURSES FOR DEGREE WITH SPECIALISATION

CATEGORY C – ELECTIVE COURSES - CREDITS (12 - 18)

(i) PROGRAMME SPECIFIC (CLASS ROOM OR ONLINE) - CREDITS (9 - 12)

S.No	CODE	COURSE	OFFERING DEPT.	CATEGOR Y	L	Т	Р	С	PREREQUISITE			
1	17ATCC10	AUTOMOTIVE POLLUTION CONTROL	AUTO	EC - PS	3	0	0	3	NIL			
2	17MESE04	RENEWABLE SOURCES OF ENERGY	MECHANICAL	EC - PS	3	0	0	3	NIL			
3	17MESE05	WASTE ENERGY CONVERSION TECHNOLOGIES	MECHANICAL	EC - PS	3	0	0	3	NIL			
4	17MESE07	NUCLEAR POWER ENGINEERING	MECHANICAL	EC - PS	3	0	0	3	NIL			
5	17MESE12	PRODUCT LIFE CYCLE MANAGEMENT	MECHANICAL	EC - PS	3	0	0	3	NIL			
6	17MESE14	REVERSE ENGINEERING	MECHANICAL	EC - PS	3	0	0	3	NIL			
7	17MESE15	SUPPLY CHAIN MANAGEMENT	MECHANICAL	EC - PS	3	0	0	3	NIL			
8	17MESE01	ENERGY CONSERVATION IN THERMAL SYSTEMS	MECHANICAL	EC - PS	3	0	0	3	NIL			
9	17MESE19	PROCESS PLANNING AND COST ESTIMATION	MECHANICAL	EC - PS	3	0	0	3	NIL			
10	17MESE20	RAPID PROTOTYPING AND TOOLING	MECHANICAL	EC - PS	3	0	0	3	NIL			
11	17MESE38	INDUSTRIAL ENGINEERING	MECHANICAL	EC - PS	3	0	0	3	NIL			
12	17MESE39	LEAN MANUFACTURING SYSTEMS	MECHANICAL	EC - PS	3	0	0	3	NIL			
13	17MESE41	MAINTENANCE MANAGEMENT	MECHANICAL	EC - PS	3	0	0	3	NIL			
14	17MESE44	SIX SIGMA QUALITY MANAGEMENT	MECHANICAL	EC - PS	3	0	0	3	NIL			

15	17MEEC01	HYDRAULICS AND PNEUMATIC SYSTEMS	MECHANICAL	EC - PS	3	0	0	3	NIL
16	17MEEC11	INDUSTRIAL ROBOTICS	MECHANICAL	EC - PS	3	0	0	3	NIL
17	17MEEC13	INDUSTRIAL SAFETY	MECHANICAL	EC - PS	3	0	0	3	NIL
18	17MEEC18	ADV ANCED IC ENGINES	MECHANICAL	EC - PS	3	0	0	3	ENGINEERING THERMODYNAMI CS
19	17MESE32	COMPOSITE MATERIALS	MECHANICAL	EC - PS	3	0	0	3	NIL
20	17MESE40	INSPECTION AND STATISTICAL QUALITY CONTROL	MECHANICAL	EC - PS	3	0	0	3	NIL
21	17MESE02	ENERGY CONSERVATION AND MANAGEMENT	MECHANICAL	EC - PS	3	0	0	3	NIL
22	17MESE03	HYDROGEN AND FUEL CELL TECHNOLOGY	MECHANICAL	EC - PS	3	0	0	3	NIL
23	17MESE46	WORK DESIGN AND ERGONOMICS	MECHANICAL	EC - PS	3	0	0	3	NIL
24	17MESE18	METAL FORMING AND JOINING PROCESS	MECHANICAL	EC - PS	3	0	0	3	NIL
25	17MESE42	DESIGN FOR QUALITY	MECHANICAL	EC - PS	3	0	0	3	NIL

	B.E/B.TECH. – MECHANICAL ENGINEERING - SEMESTER I TO VIII											
		ii. OPEN ELECTIVE (CL	ASS ROOM O	R ONLINE) -	CRE	DITS	(3 - 6	6)	Γ			
S.No	CODE	COURSE	OFFERING	CATEGOR Y	L	Т	Р	с	PREREQUISITE			
1	17ATEC12	FUEL CELL TECHNOLOGY	AUTO	EC - OE	3	0	0	3	NIL			
2	17ATEC03	MODERN AUTOMOBILE ACCESSORIES	AUTO	EC - OE	3	0	0	3	NIL			
3	17ATEC02	NEW GENERATION AND HYBRID VEHICLES	AUTO	EC - OE	3	0	0	3	NIL			
4	17BTEC15	FOOD PROCESSING TECHNOLOGY	BIOTECH	EC - OE	3	0	0	3	NIL			
5	17BTEC24	BIOFERTILIZER TECHNOLOGY	BIOTECH	EC - OE	3	0	0	3	NIL			
6	17BTEC25	BIOLOGY FOR NON BIOLIGISTS	BIOTECH	EC - OE	3	0	0	3	NIL			
7	17BTEC30	NATURAL RESOURCE MANAGEMENT	BIOTECH	EC - OE	3	0	0	3	NIL			
8	17BTEC31	APPLICATION OF ENZYME IN WASTE MANAGEMENT	BIOTECH	EC - OE	3	0	0	3	NIL			
9	17CVSE35	QUALITY CONTROL ASSURANCE IN REAL ESTATE	CIVIL	EC - OE	3	0	0	3	NIL			
10	17CVSE42	GREEN AND ENERGY EFFICIENT BUILDING	CIVIL	EC - OE	3	0	0	3	NIL			
11	17CVSE41	INFRASTRUCTURE PROJECT DEVELOPMENT	CIVIL	EC - OE	3	0	0	3	NIL			
12	17CVSE28	URBAN TRANSPORTATION INFRASTRUCTURE- PLANNING AND DESIGN	CIVIL	EC - OE	3	0	0	3	NIL			
13	17EECC14	ELECTRICAL MACHINES AND DRIVES	EEE	EC - OE	3	0	0	3	NIL			
14	17EECC16	POWER ELECTRONICS AND DRIVES	EEE	EC - OE	3	0	0	3	NIL			
15	17ECCC07	MICROCONTROLLER AND ITS APPLICATIONS	ECE	EC - OE	3	0	0	3	NIL			

16	17ECCC18	INTERNET OF THINGS FOR ELECTRONICS	ECE	EC - OE	3	0	0	3	NIL
17	17ECEV06	MEMS AND SENSORS	ECE	EC - OE	3	0	0	3	NIL
18	17CSEC09	ETHICAL HACKING	CSE	EC - OE	3	0	0	3	NIL
19	17CSEC11	GREEN COMPUTING	CSE	EC - OE	3	0	0	3	NIL
20	17CSEC24	OPEN SOURCE SYSTEMS	CSE	EC - OE	3	0	0	3	NIL
21	17CSEC32	VIRTUAL REALITY	CSE	EC - OE	3	0	0	3	NIL
22	17CSEC30	UNIX INTERNALS	CSE	EC - OE	3	0	0	3	NIL

	B.E/B.TECH. – MECHANICAL ENGINEERING - SEMESTER I TO VIII										
	CATEGORY D										
	PROJECT - CREDITS (6)										
S.No	S.No CODE COURSE		OFFERING DEPT.	CATEGORY	L	Т	Р	С	PREREQUISITE		
1	17MEPI01	PROJECT WORK	MECHANICAL	PI	0	0	12	6	NIL		

Γ

VMRF-DU-AVIT& VMKVEC SCHEDULINGOFCOURSES - B.E., -MECHANICAL ENGINEERING (PART TIME – REGULAR)

		THE	ORY		PRA	ACTICAL	CREDITS
SEMESTER	1	2	3	4	5	6	CREDITS
	ENGINEERING MATHEMATICS (FC-BS)	ENVIRONMENTAL SCIENCE AND ENGINEERING	ENGINEERING MECHANICS (CC)	MANUFACTURING ENGINEERING (CC)	MANUFACURING ENGINEERING (CC)		
Ι	(3)	(FC-BS) (3)	(3)	(3)	(2)		14
П	MATHEMATICS FOR MECHANICAL SCIENCES (FC-BS) (3)	ENGINEERING THERMODYNAMICS (CC) (3)	KINEMATICS OF MACHINES (CC) (3)	FLUID MECHANICS AND MACHINERY (CC) (3)	MACHINE DRAWING LAB (CC) (2)		14
	TOTAL QUALITY MANAGEMENT (FC-HS)	DYNAMICS OF MACHINES (CC)	THERMAL ENGINEERING (CC)	STRENGTH OF MATERIALS (CC)	ENGINE TESTING LAB (CC)	DYNAMICS AND METROLOGY LAB (CC)	16
III	(3)	(3)	(3)	(3)	(2)	(2)	
IV	DESIGN OF MACHINE ELEMENTS (CC)	COMPUTER INTEGRATED MANUFACTURING (CC)	MECHAICAL BEHAVIOUR OF MATERIALS AND METALLURGY (CC)	ENGINEERING METROLOGY AND MEASUREMENTS (CC)	COMPUTER INTEGRATED MANUFACTURING LAB (CC)	METALLURGY LAB (CC)	16
	(3)	(3)	(3)	(3)	(2)	(2)	
	DESIGN OF TRANSMISSION SYSTEM (CC)	HEAT AND MASS TRANSFER (CC)	INDUSTRIAL AUTOMATION (CC)	PROGRAMME ELECTIVE I (EC-PS)	HEAT TRANSFER LAB (CC)	INDUSTRIAL AUTOMATION LAB (CC)	16
V	(3)	(3)	(3)	(3)	(2)	(2)	
271	AUTOMOTIVE ENGINEERING (CC)	FINITE ELEMENT ANALYSIS (CC)	GAS DYNAMICS AND JET PROPULSION (CC)	OPEN ELECTIVE-I (EC-0E)	AUTOMOBILE ENGINEERING LAB (CC)	FINITE ELEMENT ANALYSIS LAB (CC)	16
VI	(3)	(3)	(3)	(3)	(2)	(2)	
VII	UNCONVENTIONAL MANUFACTURING PROCESS (CC) (3)	PROGRAMME ELECTIVE II (EC-PS) (3)	PROGRAMME ELECTIVE III (EC-PS) (3)		PROJECT WORK (CC) (6)		15
	1	ТО	TAL CREDITS TO I	BE EARNED	1	1	107

SYLLABUS

FOUNDATION COURSES

HUMANITIES AND SCIENCES AND MANAGEMENT

2 To make them to become effective communicators 3 To ensure that learners use Electronic media materials for developing language 4 To aid the students with employability skills. 5 To motivate students continuously to use English language 6 To develop the students communication skills in formal and informal situations COURSE OUTCOMES On the successful completion of the course, students will be able to CO2. Understand and speak fluently and correctly with correct pronunciation in different situation. Remember CO3. To make the students in proficient technical communicator Apply CO4 To make the students recognize the role of technical writing in their careers in business, technical and scientific field Analyze MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO2 N M - M M S - L S S M M CO3 M L M S - L S S M M CO4 To make the students recognize the role of technical writing in their careers in business, technical and scientific field Apply - - - - CO -												~				~	
Technical English is a life skill course necessary for all students of Engineering and Technology. It aims at developing communication skills in English, essential for understanding and expressing the ideas of different professional context. The outcome of the course is to help the students acque skills of Listening, Speaking, Reading, and Writing. PREREQUISITE NIL COURSE OBJECTIVES To enable students to develop LSRW skills in English. (Listening, Speaking, Reading, and Writing.) To enable students to develop LSRW skills in English. (Listening, Speaking, Reading, and Writing.) To onake them to become effective communicators To ensure that learners use Electronic media materials for developing language To develop the students continuously to use English language To develop the students continuously to use English language To develop the students continuously to use English language To develop the students continuously to use English language To develop the students continuously to use English language To develop the students continuously to use English language To add the students experts in professional writing CO2. Understand and speak fluently and correctly with correct pronunciation in different struation. CO3. To make the students good communicators at the work place and to be hopply CO4. To make the students good communicators at the work place and to be hopply CO5. To make the students good communicators at the work place and to be hopply CO5. To make the students recognize the role of technical writing in their careers in basiness, technical and scientific field MAPPING WTHPROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO2 Ind M M - M M M S - L S M M M CO3 M IL U M - C M M M S M IL S M S S M M CO4 M - M C - M M M S M IL S M S M M M	17EG	HS01			TEC	HNICA	AL EN	GLISH					y L	Т		Credit	
communication skills in English, essential for understanding and expressing the ideas of different professional context. The outcome of the course is to help the students acquire the language skills of Listening, Speaking, Reading and Writing competency in English language and thereby making the students competent and employable in the globalised scenario. PREREQUISITE VIL COURSE OBJECTIVES 1 To enable students to develop LSRW skills in English. (Listening, Speaking, Reading, and Writing.) 2 To make them to become effective communicators 3 To ensure that learners use Electronic media materials for developing language 4 To aid the students with employability skills. 5 To motivate students continuously to use English language 6 To develop the students communication skills in formal and informal situations COURSE OUTCOMES 01. Listen, remember and respond to others in different scenario CO2. Understand and speak fluently and correctly with correct pronunciation in different stuation. CO3. To make the students experts in professional writing CO4. To make the students recognize the role of technical writing in their careers in bangive basines, technical and scientific field MAPPLY COUTCOMES Out the students recognize the role of technical writing in their careers in bangive basines, technical and scientific field Apply CO2. On make the students recognize the role of provide students recognize the role of technical writing in their careers in bangive basines, technical and scientific fi	Testa	1 E	1:.1. :.	. 1:6	1_11			£ 11	- 4	(-	÷	-	-	
NIL COURSE OBJECTIVES 1 To enable students to develop LSRW skills in English. (Listening, Speaking, Reading, and Writing.) 2 To make them to become effective communicators 3 To ensure that learners use Electronic media materials for developing language 4 To aid the students with employability skills. 5 To motivate students continuously to use English language 6 To develop the students communication skills in formal and informal situations COURSE OUTCOMES Outlerstand and speak fluently and correctly with correct pronunciation in Understand different situation. CO2. Understand and speak fluently and correctly with correct pronunciation in Understand different situation. CO4 To make the students experts in proficient technical communicator Apply CO4 To make the students recognize the role of technical communicator Apply CO4 To make the students recognize the role of technical writing in their careers in business, technical and scientific field MAPPIVE WTH PROGRAMME OUTCOMES AND PROFRAMME SPECIFIC OUTCOMES CO1. S M MA M MA <	commu outcom	inication the of the	n skills e cours	in Engl se is to	lish, ess help tl	ential f ne stud	or under ents ac	erstandi quire th	ng and ne lang	express uage sk	sing the is a sing the sing the sing the single set of the set of	ideas of d	ifferent j Speakin	profession, Read	onal cont ling and	ext. The Writing	
1 To enable students to develop LSRW skills in English. (Listening, Speaking, Reading, and Writing.) 2 To make them to become effective communicators 3 To ensure that learners use Electronic media materials for developing language 4 To aid the students with employability skills. 5 To motivate students continuously to use English language 6 To develop the students communication skills in formal and informal situations COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. Listen, remember and respond to others in different scenario Remember CO2. Understand and speak fluently and correctly with correct pronunciation in different situation. Understand CO3. To make the students in proficient technical communicator Apply CO4. To make the students in proficient technical communicator Apply CO5 To make the students recognize the role of technical writing in their careers in business, technical and scientific field Analyze MAPPING WTH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES M M CO5 PO1 PO1 PO1 PO1 PO1 PS01 PS02 PS03 CO1 M M - M M	PRER	EQUIS		IL													
2 To make them to become effective communicators 3 To ensure that learners use Electronic media materials for developing language 4 To aid the students with employability skills. 5 To motivate students continuously to use English language 6 To develop the students communication skills in formal and informal situations COURSE OUTCOMES Remember C0. Listen, remember and respond to others in different scenario Remember C02. Understand and speak fluently and correctly with correct pronunciation in different situation. C04. To make the students experts in proficient technical communicator Apply C04. To make the students in proficient technical communicator Apply C05. To make the students recognize the role of technical writing in their careers in business, technical and scientific field MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES Mainter and scientific field M M So M M MA So motivate students recognize the role of technical writing in their careers in business, technical and scientific field </td <td>COUR</td> <td>SE OB</td> <td>JECTI</td> <td>VES</td> <td></td>	COUR	SE OB	JECTI	VES													
3 To ensure that learners use Electronic media materials for developing language 4 To aid the students with employability skills. 5 To motivate students continuously to use English language 6 To develop the students communication skills in formal and informal situations COURSE OUTCOMES On the successful completion of the course, students will be able to C01. Listen, remember and respond to others in different scenario Remember C02. Understand and speak fluently and correctly with correct pronunciation in different situation. C04. To make the students experts in proficient technical communicator Apply C04. To make the students good communicators at the work place and to be apply C05. To make the students recognize the role of technical writing in their careers in business, technical and scientific field MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES C05 P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 PS02 PS03 C04 M - - M M S S	1	To en	able stu	dents to	o develo	p LSR	W skill	s in Eng	glish. (I	Listenin	g, Speak	ing, Read	ing, and	Writing	g.)		
4 To aid the students with employability skills. 5 To motivate students continuously to use English language 6 To develop the students communication skills in formal and informal situations COURSE OUTCOMES On the successful completion of the course, students will be able to COURSE OUTCOMES On the successful completion of the course, students will be able to CO2. Understand and speak fluently and correctly with correct pronunciation in different situation. CO3. To make the students experts in professional writing Apply CO4. To make the students good communicator Apply CO5. To make the students good communicators at the work place and to be the ertically strong. CO6 To make the students recognize the role of technical writing in their careers in business, technical and scientific field MAPPING WTH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COS P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 PS02 PS03 COS P01 P02 P03 P04 P05	2	To ma	ake ther	n to bec	come ef	fective	commu	inicator	S								
5 To motivate students continuously to use English language 6 To develop the students communication skills in formal and informal situations COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. Listen, remember and respond to others in different scenario Remember CO2. Understand and speak fluently and correctly with correct pronunciation in different situation. Understand CO3. To make the students experts in professional writing Apply CO4. To make the students in proficient technical communicator Apply CO5. To make the students recognize the role of technical writing in their careers in business, technical and scientific field Analyze MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES M CO3 P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 PS02 PS03 C03 M CO3 M L M S L S M M CO2 L M - L M S S M M CO4 - M - - L L M S S M M CO4 - M - - M S S S <td>3</td> <td>To en</td> <td>sure tha</td> <td>t learne</td> <td>ers use</td> <td>Electro</td> <td>nic mec</td> <td>lia mate</td> <td>erials fo</td> <td>or devel</td> <td>oping la</td> <td>nguage</td> <td></td> <td></td> <td></td> <td></td>	3	To en	sure tha	t learne	ers use	Electro	nic mec	lia mate	erials fo	or devel	oping la	nguage					
6 To develop the students communication skills in formal and informal situations COURSE OUTCOMES On the successful completion of the course, students will be able to COL Listen, remember and respond to others in different scenario Remember COURES COULDES COULDES COULDES Remember COURDES Remember COULDES COULE Sector COULE Sector COL Listen, remember and respond to others in different scenario Remember CO2. Understand and speak fluently and correctly with correct pronunciation in Understand different situation. CO3. To make the students in proficient technical communicator Apply CO4. To make the students good communicators at the work place and to be Apply CO5 To make the students recognize the role of technical writing in their careers in business, technical and scientific field MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES COS PO1 PO2<	4	To aid	d the stu	idents v	vith emp	ployabi	lity skil	ls.									
COURSE OUTCOMES COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. Listen, remember and respond to others in different scenario Remember CO2. Understand and speak fluently and correctly with correct pronunciation in different situation. CO3. To make the students experts in professional writing Apply CO4. To make the students in proficient technical communicator Apply CO4. To make the students good communicators at the work place and to be theoretically strong. Apply CO5. To make the students recognize the role of technical writing in their careers in business, technical and scientific field Analyze MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES M M M CO3 PO1 PO11 PO12 PS01 PS02 PS03 Odd M M Male is the students recognize the role of technical writing in their careers in business, technical and scientific field M M M COS PO1<	5	To mo	otivate s	students	contin	uously	to use E	English	languag	ge							
On the successful completion of the course, students will be able to CO1. Listen, remember and respond to others in different scenario Remember CO2. Understand and speak fluently and correctly with correct pronunciation in different situation. Understand CO2. Understand and speak fluently and correctly with correct pronunciation in different situation. Understand CO3. To make the students experts in professional writing Apply CO4 To make the students experts in proficient technical communicator Apply CO4 To make the students in proficient technical communicator Apply CO5. To make the students good communicators at the work place and to be theoretically strong. Apply CO6 To make the students recognize the role of technical writing in their careers in business, technical and scientific field Analyze MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO5 M M M A PO1 PO11 PO12 PS01 PS02 PS03 CO6 M A	6	To de	velop tł	ne stude	ents con	nmunica	ation sk	tills in f	ormal a	and info	ormal situ	ations					
CO1. Listen, remember and respond to others in different scenario Remember CO2. Understand and speak fluently and correctly with correct pronunciation in different situation. Understand CO3. To make the students experts in professional writing Apply CO4. To make the students in proficient technical communicator Apply CO5. To make the students good communicators at the work place and to be theoretically strong. Apply CO6 To make the students recognize the role of technical writing in their careers in business, technical and scientific field Analyze CO3 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO3 M M - M M S - L S L S M M CO4 M - - M M - L L M S S M M CO4 - M - - M M S S S M M CO5 M M - -	COUR	SE OU	TCOM	IES													
CO2. Understand and speak fluently and correctly with correct pronunciation in different situation. Understand CO3. To make the students experts in professional writing Apply CO4. To make the students in proficient technical communicator Apply CO5. To make the students good communicators at the work place and to be theoretically strong. Apply CO6 To make the students recognize the role of technical writing in their careers in business, technical and scientific field Analyze MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES OUTCOMES CO3 M - M M S - L S M M CO2 L M - - L L M S S S M M CO3 M L L M - - M M S S S M M S CO3 M L L M - - M M S S S M M M S S S M M S S S M M M <td< td=""><td></td><td></td><td></td><td>A</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>				A													
different situation. CO3. To make the students experts in professional writing Apply CO4 To make the students in proficient technical communicator Apply CO5. To make the students good communicators at the work place and to be theoretically strong. Apply CO6 To make the students recognize the role of technical writing in their careers in business, technical and scientific field Analyze MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES Analyze CO3 M M - L M M S - L S L S M M CO2 L M - - M M S - L M S S M M CO3 M L L M - - M M S S S M M CO3 M L L M - - L L M S S S M M CO3 M L L M S S S M M S S M M S S M M M					-								lemembe	er			
CO3. To make the students experts in professional writing Apply CO4 To make the students in proficient technical communicator Apply CO5. To make the students good communicators at the work place and to be theoretically strong. Apply CO6 To make the students recognize the role of technical writing in their careers in business, technical and scientific field Analyze MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES Analyze CO5 P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 PS02 PS03 CO1 M M - M M S - L S L S M M CO2 L M - L M M S - L S S M M CO3 M L L M - - M M S S S M M S S M M S S S M M S S S M M M </td <td></td> <td></td> <td></td> <td>d spea</td> <td>k fluen</td> <td>tly and</td> <td>l corre</td> <td>ctly wi</td> <td>th corr</td> <td>ect pro</td> <td>onunciati</td> <td>on in U</td> <td>Inderstar</td> <td>nd</td> <td></td> <td></td>				d spea	k fluen	tly and	l corre	ctly wi	th corr	ect pro	onunciati	on in U	Inderstar	nd			
A point of the students in proficient technical communicator Apply CO4 To make the students in proficient technical communicator Apply CO5. To make the students good communicators at the work place and to be theoretically strong. CO6 To make the students recognize the role of technical writing in their careers in business, technical and scientific field MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES CO5 M M M M M M M M M M CO3 M CO2 M M CO2 M M CO3 M CO3 M CO3 M CO3 M CO3 M CO3 M				1 /		C	· 1	•,•					1				
CO5. To make the students good communicators at the work place and to be theoretically strong.ApplyCO6 To make the students recognize the role of technical writing in their careers in business, technical and scientific fieldAnalyzeMAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMESCOS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03COS PO1 M M - L M M S - L S L S M MCO3 M L L M · L M M S · L S S SCO3 M L L M · C · M M S · L S S S MCO4 · M · · M M S M L S M SCO5 M M · M · · M M S M L S M SCO5 M M · M · · M M S M L S M S					•	•		0				A	pply				
In the students recognize the role of technical writing in their careers in business, technical and scientific fieldAnalyzeMAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMESCOS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3COS M MCOS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3COS M MCOS M MM M SCOS M MCOS M MCOS M MCOS M MM MM MSM MCOS M MCOS M MM MM MM MM MCOS MM MM MM MM MM MCOS MM M <th col<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td></td>																
CO6 To make the students recognize the role of technical writing in their careers in business, technical and scientific fieldAnalyzeMAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMESCOSPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12PS01PS02PS03COSPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12PS01PS02PS03CO1MMLSLSLSMMCO2LMMLLSSSMMCO2LMLLLMSSSMMCO2LMLLLMSSMMCO2MLMLLLMSSMMCO3MLLMLLLMSSMMCO4-MLLLSMSSMMCO4-MMMSMLSMSSMMCO4-MMS <td></td> <td></td> <td></td> <td>student</td> <td>ts good</td> <td>l comn</td> <td>nunicat</td> <td>ors at</td> <td>the wo</td> <td>ork pla</td> <td>ce and</td> <td>to be A</td> <td>pply</td> <td></td> <td></td> <td></td>				student	ts good	l comn	nunicat	ors at	the wo	ork pla	ce and	to be A	pply				
business, technical and scientific fieldMAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMESCOSPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12PS01PS02PS03CO1MMMMS-LSLSMMMCO2LMMLMMS-LSSSMMCO2LMLLLSSSMMSCO3MLLMLLLMSSSMMCO3MLLMLLLMSSMMSCO3MLLMLLLMSSMMCO4-MLLLSMSMMCO5MMMNSMLSMMMMCO6M-MSMMM				lents re	cognize	the rol	e of tec	hnical	writing	in their	careers	in A	nalvze				
COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 CO1 M M - - M M S - L S L S M M M CO2 L M - L M M S - L S L S M M M CO2 L M - L M M S - L S S S M M M CO3 M L L M - - L L L M S S M S M S M S S M M S S L L L M S M M S M M S M M S M M S M M M M M S M								inneur	winning	in then	curcers		maryze				
CO1 M M - - M M S - L S L S M M M CO2 L M - L M M S - L S L S M M M CO2 L M - L M M S - L S S S M M S CO3 M L L M - - L L L M S S S M S CO3 M L L M - - L L L M S S M S M S S M M S S M M S M	MAPP	ING W	ITH P	ROGR	AMMI	E OUT	COME	S AND	PROG	GRAM	ME SPE	CIFIC O	UTCON	AES			
CO1 M M - - M M S - L S L S M M M CO2 L M - L M M S - L S L S M M M CO2 L M - L M M S - L S S S M M S CO3 M L L M - - L L L M S S S M S CO3 M L L M - - L L L M S S M S M S S M M S S M M S M	COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO3 M L L M - L L L M S S S M CO4 - M - - M M - L S - S M - CO4 - M - - M M - L S - S M CO5 M M - M M S M L S M S S M CO5 M M - M S M L S M S S M CO6 M - M - - M - - S M M M	CO1	Μ	М	-	-	Μ	Μ	S	-	L	S	L	S		Μ	M	
CO4 - M - L S - S M CO5 M M - M M S M L S M S M CO5 M M - M M S M L S M S S M CO6 M - M - - M - - S M M M	CO2	L	Μ	-	L	Μ	Μ	S	-	L	S	S	S		Μ	S	
CO5 M M - M M M S M L S M S S M CO6 M - M - - M - - S M M M M	CO3	Μ	L	L	Μ	-	-	L	L	L	Μ	S	S	S	Μ		
CO6 M - M M S M M M	CO4	-	Μ	-	-	-			-			-			Μ		
	CO5		Μ		Μ	Μ		S	Μ	L	S					Μ	
S- Strong; M-Medium; L-Low	CO6		-		-	-	Μ	-	-	-	-	S	Μ	Μ	Μ		
	S- Stro	ong; M-N	Medium	n; L-Lov	W												

SYLLABUS SELF INTRODUCTION

Self introduction - Simulations using E Materials - Whatsapp, Face book, Hiker, Twitter- Effective Communication with Minimum Words - Interpretation of Images and Films - Identify the different Parts of Speech- Word formation with Prefixes and suffixes -Common Errors in English - Scientific Vocabulary (definition and meaning) - Listening Skills- Passive and Active listening, Listening to Native Speakers - Characteristics of a good listener.

ARTICLES

Articles - Phonetics (Vowels, Consonants and Diphthongs) - Pronunciation Guidelines -Listening to Indian speakers from different regions, intrusion of mother tongue - Homophones – Homophyms - Note taking and Note making - Difference between Spoken and Written English- Use of appropriate language - Listening and Responding to Video Lectures (Green India, environment, social talks) - Extempore.

TENSE FORMS

Tense forms- Verbal and Non verbal Communication - Describing objects - Process Description- Speaking Practice - Paragraph Writing on any given topic (My favourite place, games / Hobbies / School life, etc.) -Types of paragraphs - Telephone Etiquettes - Telephonic conversation with dialogue.

IMPERSONAL PASSIVE VOICE

Impersonal Passive Voice - Conditional Sentences - Technical and Non technical Report Writing (Attend a technical seminar and submit a report) - News Letters and Editing - Skimming- Scanning - How to Improve Reading Speed - Designing Invitations and Poster Preparation.

SENTENCE PATTERN

Sentence Pattern (SVOCA) - Statement of Comparison - Transcoding (Flow Chart, Bar Chart and Pie Chart) - Informal letters - Resume Writing- Difference between Bio data, Resume and Curriculum Vitae.

TEXTBOOK

1. English for Engineers- Faculty of English - VMKV Engineering College, Salem and AVIT, Chennai

REFERENCES

- 1. 1. English for Effective Communication, Department of English, VMKV & AVIT, SCM Publishers, 2009.
- 2. Practical English Usage- Michael Swan (III edition), Oxford University Press
- 3. Grammar Builder- I, II, III, and Cambridge University Press.

4 Pickett and Laster. Technical English: Writing, Reading and Speaking, New York: Harper and Row Publications,

2002. Course Designers:

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.P.Saradha	Associate Professor	English	saradhap@vmkvec.edu.in
2	Mr.S.K.Prem Kishor	Assistant Professor	English	Prem.english@avit.ac.in

17EG	HS02		BUS	INESS	ENGI	LISH					Categor	y L	Т	P C	Credit
1/20	11002										HSS	3	0	0	3
English		ternatic	nal lang	guage p	lays a	vital rol					y of wisc ement of				
PRER	EQUIS	ITE NII													
COUR	SE OB	JECTI	VES												
1	To in	npart ar	nd enhai	nce corj	porate c	commu	nication	l.							
2	To er	nable le	arners t	o devel	op pres	entation	n skills								
3	To b	uild coi	nfidence	e in lear	mers to	use En	glish in	Busine	ess cont	ext					
4	To ma	ke ther	n exper	ts in pro	ofession	nal writ	ing								
5	To as	sist stuc	lents un	derstan	d the ro	ole of th	inking	in all fo	orms of	commun	ication				
6	To eq	uip stuc	lents wi	th emp	loyabili	ty and	job seai	rching s	skills						
COUR	SE OU	TCOM	IES												
On the	success	ful con	pletion	of the	course,	student	ts will b	be able	to						
	Commui											Indersta	nd		
								nteraction	on skills	s and con	sider A	Apply			
	vn com							~~ ~~~*							
CO3. S	trength	ening o	i orai a	na writt	en skill	s in the	ousine	ss cont	ext		P	Apply			
CO4. (Create ir	terest a	mong t	he stud	ents abo	out a to	pic by e	explorir	ng thoug	ghts and i	deas A	Apply			
	Aake the	e studer	nts to st	tart with	ı pleasi	ng note	and m	ake the	em to gi	ve differ	ent A	Apply			
ideas	<u>x 1 .1</u>			C			<u>c</u>								
	Aake the									ME SDE	CIFIC O	Apply	MES		
		-							1	r				DGOO	DECO
$\frac{\text{COS}}{\text{CO1}}$	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
$\frac{CO1}{CO2}$	Μ	- M	L	- -	L	S	S	-	M	S	-	S	S	-	
CO2 CO3	- L	M M	S	Μ	-	M M	M	- L	L	S S	- L	<u>S</u> M	M	- M	
$\frac{CO3}{CO4}$	L		- M	- M	-	-	- L	L M	- M	S S	L L	M	- M	- NI	- M
C04 C05	-	-	-	M	-	-	-	M	L	S S	- L				111
CO6	-	L	-	M	-	L	L	-	-	S	-	S E	M	M	S
			n; L-Lov					L	1			5			5

SYLLABUS

UNIT – I: Subject and Verb Agreement (concord) - Preposition and Relative Pronoun - Cause and effect - Phrasal Verbs-Idioms and phrases-Listening Comprehension -Listening to Audio Files and Answering Questions-Framing Questions-Negotiation Skills-Presentation Skills and Debating Skills.

UNIT – II: Stress (Word Stress and Sentence Stress) Intonation- Difference between British and American English Vocabulary-Indianism-Compound Words (including Technical Terminology).

UNIT – III Reading Skills-Understanding Ideas and making Inferences-Group Discussion-Types of Interviews – FAQs – E - Mail Netiquette - Sample E – mails - Watching Documentary Films and Responding to Questions.

UNIT IV - Corporate Communication -Recommendation-Instruction-Check List- Circulars-Inter Office Memo- Minutes of Meeting and Writing Agenda - Discourse Markers - Rearranging Jumbled Sentences - Technical Articles - Project Proposals-Making Presentations on given Topics -Preparing Power Point Presentations

UNIT V - Critical Reading-Book Review-Finding Key Information and Shifting Facts from Opinions-Business Letters (Calling for Quotation, Placing Orders and Complaint Letters) - Expansion of an Idea-Creative Writing.

ТЕХТВООК

1. 1. English for Effective Communication - Faculty of English - VMKV Engineering College, Salem and AVIT, Chennai

REFERENCES

1. Grammar Builder – I, II, III – Cambridge University Press.

2. Technical English – Writing, Reading and Speaking – Pickett and Lester, Harper and Row

Course Designers:

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr.P.Saradha	Associate Professor	English	saradhap@vmkvec.edu.in
2	Mr.S.K.Prem Kishor	Assistant Professor	English	Prem.english@avit.ac.in

17MBHS04	TOTAL QUALITY	Category	L	Т	Р	Credit
171011504	MANAGEMENT	HSS	3	0	0	3

PREAMBLE:

Quality is the mantra for success or even for the survival of any organization in this competitive global market. Total Quality Management (TQM) is an enhancement to the traditional way of doing business. TQM integrates fundamental management techniques, existing improvement efforts, and technical tools under a disciplined approach for providing quality of products and processes. It becomes essential to survive and grow in global markets, organizations will be required to develop customer focus and involve employees to continually improve Quality and keep sustainable growth.

PREREQUISITE: Not Required

COURSE OBJECTIVES:

1. To understand the Total Quality Management concepts.

2. To practice the TQM principles.

3. To apply the statistical process control

4. To analyze the various TQM tools

5. To adopt the quality systems.

COURSE OUTCOMES:

After successful completion of the course, students will be able to

CO1: Understand the importance of quality and TQM at managerial level.	Understand
CO2: Practice the relevant quality improvement tools to implement TQM.	Apply
CO3: Analyse various TQM parameters with help of statistical tools.	Analysing
CO4: Assess various TQM Techniques.	Evaluate
CO5: Practice the Quality Management Systems in a different organization	Apply

Environment.

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	-	-	-	-	-	L	L	L	М	L	М	L	-	L
CO2	М	-	-	-	L	L	-	L	М	М	-	L	М	L	-
CO3	S	S	М	S	S	-	-	L	-	L	-	L	М	L	М
CO4	L	М	S	L	М	-	L	-	L	М	L	М	М	М	L
CO5	L	L	М	-	L	М	S	S	М	L	L	М	-	М	М
S- Stro	ng; M	-Medi	ium; I	L-Low											

SYLLABUS:

INTRODUCTION

Quality: Definition - Dimensions - Planning- costs – Analysis Techniques for Quality Costs- Basic concepts of Total Quality Management- Historical Review- Principles - Leadership – Concepts- Role of Top Management-Quality Council – Quality Statements- Strategic Planning- Deming Philosophy- TQM Implementation – Barriers.

TQM PRINCIPLES

Customer satisfaction – Perception of Quality- Complaints- Service Quality- Customer Retention- Employee Involvement – Motivation- Empowerment - Teams- Recognition and Reward- Performance Appraisal- Benefits-Continuous Process Improvement – Juran's Trilogy- PDSA Cycle- 5S – Kaizen - Basic Concepts.

STATISTICAL PROCESS CONTROL (SPC)

The Seven tools of Quality- Statistical Fundamentals – Measures of central Tendency & Dispersion- Population and Sample- Normal Curve- Control Charts for variables and attributes- Process capability- Concept of six sigma-New seven Management tools.

TQM TOOLS

Benchmarking – Reasons - Process- Quality Function Deployment (QFD) – House of Quality- QFD Process-Benefits- Taguchi Quality Loss Function- Total Productive Maintenance (TPM) – Concept- Improvement Needs-FMEA – Stages of FMEA.

QUALITY SYSTEMS

Need for ISO 9000 and Other Quality Systems- ISO 9000:2000 Quality System – Elements- Implementation of Quality System- Documentation- Quality Auditing- QS 9000- ISO 14000 – Concept- Requirements and Benefits.

TEXT BOOKS:

- 1. Dale H.Besterfiled- et at. Total Quality Management- PHI-1999. (Indian reprint 2002).
- 2. Feigenbaum.A.V. "Total Quality Management- McGraw-Hill- 1991.

REFERENCES:

- James R.Evans & William M.Lidsay The Management and Control of Quality- (5th Edition) South-Western (Thomson Learning) - 2002 (ISBN 0-324-06680-5).
- 2. Oakland.J.S. "Total Quality Management Butterworth Hcinemann Ltd Oxford. 1989.
- 3. Narayana V and Sreenivasan N.S. Quality Management Concepts and Tasks- New Age International 1996.

COURSE DESIGNERS:

S.No	Name of the Faculty	Designation	Department	Mail ID
1	A. Mani	Associate Professor	Management Studies	mani@vmkvec.edu.in
2	Dr. V. Sheela Mary	Associate Professor	Management Studies	sheelamary@avit.ac.in

17	MBH	501		ENG	INEE	RING	STA	RTUPS	;	Categ	gory	L	Т	Р	Credit
				AND			ENEU MEN'	URIAL T		HS	S	3	0	0	3
PREAM	BLE:												ľ		
A startu	p mea	ns co	mpany	[,] initia	ted by	indiv	idual i	innovate	or or	entrepr	eneurs 1	to searc	ch for a	a repeat	able and
scalable	busin	iess m	odel.	More	specif	ically,	a sta	rtup is	a nev	vly em	erged b	usiness	ventu	re that	aims to
develop	a viat	ole bus	iness 1	nodel	to mee	et a ma	arketpl	lace nee	ds or	wants i	n an op	timum	manne	er.	
PRERE	QUISI	TE: N	ot Req	uired											
COURS	E OBJ	ECTI	VES:												
1	. To	under	stand	the bas	sics of	Startu	ps Ma	inageme	ent an	d comp	onents.				
2	2. То	analyz	ze the	startup	os fund	mana	igemei	nt pract	ices						
3	8. To	practi	ce the	variou	ıs kind	s of st	ocks a	ind emp	loym	ent con	siderati	ons in s	startup	s.	
	. To	apply	the in	portai	nce of i	intelle	ctual p	property	righ	ts and i	s proce	dures.			
				entrep	reneur	ial miı	ndset a	and cult	ure.						
COURS															
After su			-												
CO1: E	xplain	the co	oncept	of eng	gineeri	ng sta	rtups,	objectiv	ves an	d funct	ions and	d its	Un	derstand	
compone															
CO2:	Analy	ze the	starti	ups fu	nding	issues	s and	remune	eratio	n pract	ices in	startuj	os An	alyse	
business	•														
CO3: A	nalyz	e the v	arious	kinds	of sto	cks an	d emp	loymen	t opp	ortuniti	es and		An	alyse	
consider	ation	in star	tups b	usines	s.										
CO4:	Comp	are an	d cont	rast th	e vario	ous for	rms of	intelle	ctual	propert	y protec	ction ar	d An	alyse	
practice.															
CO5: E	xplore	the er	ntrepre	eneuria	al mind	lset an	d cult	ure that	has b	een de	veloping	g in	Ev	aluate	
C	ompar	nies of	all siz	es and	indus	tries.									
MAP	PING	WIT	H PRO	OGRA	MME	E OUT	COM	IES AN	D PH	ROGRA	AMME	SPEC	IFIC (OUTCO	MES
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	-	-	-	-	М	М	S	-	М	-	М	L	L	L
CO2	S	S	М	М	М	L	-	-	-	-	-	М	L	М	-
CO3	S	S	S	М	М	М	-	-	-	-	-	М	-	-	L
CO4	S	S	S	М	М	М	-	-	-	-	-	М	L	L	М
CO5	S	S	-	М	М	М	-	-	-	-	-	М	-	-	М
S- Stron	ıg; M	Medi	um; L	-Low	I		1					I	<u> </u>		

SYLLABUS:

Elements of a successful Start up: Create Management Team and Board of Directors – Evaluate market and Target Customers – Define your product or service –Write your Business Plan

Funding Issues and Remuneration Practices: Funding Issues: Investment Criteria – Looking for seed cash – Seed, Startup, and subsequent Funding Rounds – Milestone Funding - Remuneration Practices for your Start –up : Salaries – Headhunters – Equity Ownership – Form of Equity incentive vehicles – Other compensation – Employment Contracts

Stock Ownership & startup Employment Considerations: Stock ownership: Risk-Reward Scale – Ownership Interest over time – Common and preferred stock – Authorized and outstanding shares – Acquiring stock – Restricted Stock Grants – Future Tax Liability on Restricted Shares – Compensation and startup Employment Considerations : Entrepreneurs Need Insurance – Do Fringe benefits – outsourcing your benefits work – Life Insurance – Health Insurance – Disability Insurance

Protecting Intellectual Property: Protecting your intellectual property: Copyrights - patents–Trade secrets – Trademarks - The Legal Form of your Startup: Corporation – Partnership – Limited Liability Company – Sole Proprietorship - – Making the startup decision: commitment – Leaving a current employer - stay fit.

Entrepreneurship: Entrepreneurship - Introduction to Technology Entrepreneurship and Technology Ventures – Engineers as Entrepreneurs, The Mindset of the Entrepreneurial Leader, Creating and Selling the Entrepreneurial Value Proposition - Essentials of Successful Entrepreneurs – Social environment in entrepreneurial development – Economic environment in entrepreneurial development.

Text Book:

- 1. James A. Swanson & Michael L. Baird, "Engineering your start-up: A Guie for theHigh-Tech Entrepreneur" 2nd ed, Professional Publications.inc
- 2. Donald F Kuratko, "Entreprenuership Theory, Process and Practice", 9th Edition, Cengage Learning 2014.

Reference Books:

- 1. Hisrich R D, Peters M P, "Entrepreneurship" 8th Edition, Tata McGraw-Hill, 2013.
- 2. Mathew J Manimala, "Enterprenuership theory at cross roads: paradigms and praxis" 2nd Edition Dream tech, 2005.
- 3. Rajeev Roy, 'Entrepreneurship' 2nd Edition, Oxford University Press, 2011.
- 4. EDII "Faulty and External Experts A Hand Book for New Entrepreneurs Publishers: Entrepreneurship Development", Institute of India, Ahmadabad, 1986.

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr. G. Murugesan	Professor	Management Studies	murugesan@vmkvec.edu.in
2	Mr. T. Thangaraja	Assistant Prof.	Management Studies	thangaraja@avit.ac.in

COURSE DESIGNERS:

17MBHS07	PROFESSIONAL ETHICSAND HUMAN VALUES	Category	L	Т	Р	Credit
	HUMAN VALUES	HSS	3	0	0	3

PREAMBLE: Ethics is a system of moral principles governing the appropriate conduct of a person or a group. Good Ethics is a fundamental requirement of any profession. Regardless of profession, ethics is an important part of work. The success depend on how the workers and their dealing with the situations ethically or unethically. Professional ethics are as important as personal ethics. Professional ethics encompass the personal and corporate standards of behavior expected by professional. Human values are the features that guide people to take into account the human element when one interacts with other human. They have many positive characters and positive feelings that create bonds of humanity between people and thus have value for all human beings and have the effect of bonding, comforting, reassuring and procuring serenity. They build space for a drive, a movement towards one another, which leads to peace.

PREREQUISITE: Not Required

COURSE OBJECTIVES:

1. To understand the basic concept of Human Values and Ethics.

- 2. To analyse the common ethical practice in the engineering professionals.
- 3. To Practice various code of ethics in Engineering.
- 4. To apply the rights, legal, ethical issues.
- 5. To practice ethical responsibilities of a professional engineer.

COURSE OUTCOMES:

After successful completion of the course, students will be able to

,,, _,	
CO1: Understand the moral values that ought to be practiced in engineering profession	Understand
CO2: Analyse the role of ethics in the field of engineering.	Analyse
CO3: Practice the code of ethics and Industrial standards	Apply
CO4: Assess the Safety, Quality Management and Risk analysis	Evaluate
CO5: Apply the skills and knowledge to handle the contemporary issues.	Apply

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	-	-	-	-	М	-	L	М	М	L	М	М	-	-
CO2	М	-	-	-	-	S	L	М	L	М	L	М	L	-	-
CO3	М	-	М	L	L	М	-	М	-	-	М	М	М	М	L
CO4	М	М	М	-	М	L	-	М	L	L	L	М	М	L	М
CO5	М	М	М	L	L	-	-	М	L	М	М	М	М	М	М
0.01		N <i>T</i> 1'	T												I

S- Strong; M-Medium; L-Low

SYLLABUS:

Introduction to Human Values

Morals, values and Ethics – Integrity – Work ethic – Service learning – Civic virtue – Respect for others – Living peacefully – Caring – Sharing – Honesty – Courage – Valuing time – Cooperation – Commitment – Empathy –Self-Confidence–Discrimination -Character – Challenges in the work place -Spirituality –and stress management.

Overview of Engineering Ethics

Senses of 'Engineering Ethics' – Variety of moral issues – Moral Dilemmas- moral autonomy - Kohlberg'stheory-Gilligan'stheory-consensus and controversy-Profession – Types of Profession- Models of professional roles – Theories about right action – Self- Respect- Self-interest – Customs and Religion – Uses

of Ethical Theories-Religion - Case study: Choice of the theory

Engineering as Social Experimentation

Engineering as Experimentation – Engineering Projects VS. Standard Experiments - Engineers as responsible Experimenters – Codes of Ethics – anticorruption-A Balanced Outlook on Law.

SAFETY, RESPONSIBILITIES AND RIGHTS

Safety and Risk – Assessment of Safety and Risk – Risk Benefit Analysis and Reducing Risk – Respect for Authority – Collective Bargaining – Confidentiality – Conflicts of Interest – Occupational Crime – Professional Rights – Employee Rights – Intellectual Property Rights (IPR) – Discrimination

GLOBAL ISSUES

Transnational and MNC corporations-Environmentalethics-Computerethics-Weaponsdevelopment and Ethical - stand for Engineers in creation-Engineers as managers-Consulting engineers-Engineers as expertwitnessesandadvisorsEthical Responsibilities of a Professional Engineer as an Expert Witness -Moral Leadership –Code of Conduct – Corporate Social Responsibility **Case Studies**

TEXT BOOK:

- 1. Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, New Delhi, 2003.
- 2. Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004.
- 3. R.S. Nagarajan, A Text Book on Professional Ethics and Human Values, New Age International (P) Limited, Publishers,2006

REFERENCES:

- 1. CharlesD.Fleddermann,"EngineeringEthics",PearsonEducation/PrenticeHall,NewJersey, 2004
- 2. CharlesEHarris,MichaelS.ProtchardandMichaelJRabins,"EngineeringEthics–Concepts and Cases",WadsworthThompsonLeatning, United States,2000
- 3. John R Boatright, "Ethicsandthe ConductofBusiness", PearsonEducation, NewDelhi, 2003.
- 4. EdmundGSeebauerandRobertLBarry, "FundamentalsofEthicsforScientistsandEngineers", Oxford Press, 2000
- 5. R.Subramanian, "ProfessionalEthics", Oxford University Press, Reprint, 2015.

L	COURS	SE DESIGNERS:				
	S.No	Name of the Faculty	Designation	Department	mail id	
	1	Dr. P. Marishkumar	Associate Professor	Management Studies	marishkumarp@vmkvec.edu.in	
	2	T. Thangaraja	Assistant Professor	Management Studies	thangaraja@avit.ac.in	

COURSE DESIGNERS:

17MBHS08	PROJECT MANAGEMENT FOR	Category	L	Т	Р	Credit
	ENGINEERING BUSINESS AND	HSS	3	0	0	3
	TECHNOLOGY					

PREAMBLE: Engineering Project Management is a type of Project Management, focuses solely on engineering and Management. Similar to other Project Management it posses standard methodologies and processes with engineering background. It enables to get into the field of Project Management. These skills can provide critical benefits such as improved efficiency, enhanced effectiveness, success replication, perfect leadership and communication, and complete view of the project in the aspect of time and cost.

PREREQUISITE: Not Required

COURSE OBJECTIVES:

- 1. To understand the importance of Project Management.
- 2. To understand the Project management Techniques.
- 3. To understand the statistical process control.
- 4. To impart the various Project management tools and software.
- 5. To understand the Project management and resource utilization.

COURSE OUTCOMES:

After successful completion of the course, students will be able to

CO1: Understand the importance of Project Management and Business.	Understand
CO2: Explain the required tools to implement Project Techniques.	Apply
CO3: Analyze various Project constraints with help of project tools.	Analyze
CO4: Evaluating various Project Techniques.	Analyze
CO5: Put forward the Project management in a different organization milieu.	Evaluate

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	Μ	-	-	-	Μ	-	-	Μ	S	-	Μ	L	L	Μ
000	0	G					0		0	a					Y
CO2	S	S	Μ	-	Μ	Μ	S	Μ	S	S	-	-	-	Μ	L
CO3	S	М	М	М	S	_	М	М	_	М	_	М	М	М	L
005	5	171	171	171	5		171	141		111		111	111	141	Ľ
CO4	Μ	-	S	-	Μ			S	S			Μ	Μ	-	Μ
CO5	Μ	Μ	-	-	Μ	Μ	Μ	S		S	Μ	S	-	-	S
S Stro				T area	1	1		1		I	I	I			

S- Strong; M-Medium; L-Low

SYLLABUS:

UNIT I INTRODUCTION

Project Management concept-Attributes as a project-Project life cycle-The Project Management process-Benefits of Project Management- Needs, Identification-Project selection-preparing a request for proposal-Soliciting proposals-Proposed solutions- Proposal Marketing-Bid/No-Bid Decision-Developing Winning Proposal-Proposal preparation-Proposal contents-Pricing Consideration-Proposal Submission and Follow-up - Customer evaluation as proposals-Types of contracts-Contract provisions.

UNIT-II- PROJECT PLANNING

Project Planning-Project Planning Objective-Work Break-down structure-Responsibility Matrix-Defining activities-Developing the network plan-Planning for Information system development- -Scheduling-activity duration estimates-project start and finish times-Schedule calculation-Scheduling for information systems development.

UNIT-III- PROJECT CONTROL PROCESS

Schedule control-Project control process-Effects of actual schedule performance - Incorporating project changes into schedule-Updating the project schedule-Approaches to schedule control-Schedule control for information system development – Resource consideration-Constrained Planning-Planned resources utilization – Resources levelling- Limited scheduling-Project Management software – Cost Planning and Performance - Project cost Estimates-Project Budgeting-Determining actual cost-Determining the value of work performed-Cost performance analysis-Cost forecasting-Cost control-Managing Cash Flow.

UNIT IV RISK AND FEASIBILITY

Benchmarking – Reasons - Process- Quality Function Deployment (QFD) – House of Quality- QFD Process- Benefits- Taguchi Quality Loss Function- Total Productive Maintenance (TPM) – Concept-Improvement Needs- FMEA – Stages of FMEA.

UNIT V PROJECT MANAGER SKILLS AND ABILITIES

Project Manager-Responsibilities of the Project Manager-Skills at the Project Manager - Developing the skill needed to be a Project Manager-Delegation-Managing Change – Project Team-Project Team development and Effectiveness- Ethical Behaviour conflict on project-problem solving-Time Management-Project Communication and Personal Communication-Effective listening-Meetings-Presentation-Report-Project documentation and Controlling changes-Types of project organization- Matrix organization.

TEXT BOOKS:

- 1. Samuel J.Mantel JR., Jack R.Meredith, Project Management, Wiley India, Edition 2006.
- 2. Santakki.V.C., Project Management, Himalaya Publishing House, Edition 2006.

REFERENCES:

COURSE DESIGNERS:

1. Project Management, Jack Gido and James P Clements, (Edition 2009) Cenage Learning India pvt Ltd., New Delhi.

S.No	Name of the Faculty	Designation	Department	mail id	
1	B. Rajnarayanan	Assistant Professor	Management Studies	rajsachin.narayanan@gmail.com	
2	Dr. V.Sheelamary	Asso.Professor	Management Studies	sheelamary@avit.ac.inn	

	INTELLECTUAL PROPERTY	Category	L	Т	Р	Credit
17MBHS09	RIGHTS AND ALTERNATE DISPUTE RESOLUTION	HSS	3	0	0	3
PREAMBLE: IPR &		I				
Intellectual Property R	lights are valuable assets and the most e	ssential for any	kind of	busines	s develo	pment. IPR
helps to set the busin	less to show individuality from market	competitors. I	t preven	ts dupli	cation a	nd provide
authentication as a uni	que selling point to compete in the mark	et and built con	fidence of	over the	product	among the
customers. ADR is a	new legal mechanism to sort out disput	es among indus	tries and	l helps t	to get ea	sily solved
	counselling. It provides instant solutions	s to both the par	ties with	meagre	loss in a	a faster way
and less expensive through	ough arbitrator.					
PREREQUISITE: No						
COURSE OBJECTIV	VES:					
6. To understand and	practice the basic concept of IPR and Pa	tent filing proce	dure.			
7. To describe the var	rious procedure for getting grants of pater	nt, trademark an	d trade s	ecrets.		
8. To apply various le	gal aspects in patent ownership and trans	sfer.				
	pest practices and laws relating to the Inte					
10. To examine the pra	actices of ADR mechanism in the technol	ogical advancer	nent con	texts.		
COURSE OUTCOM	ES:					
After successful comp	letion of the course, students will be able	to				
CO1: Understand the	concept and development of intellectual	property rights.		U	Jnderstai	nd
CO2: Explain the proc	edure and requirement of to apply New	IPR developmer	nt and rel	ated U	Indersta	nd
system in India and act	ross the Globe.					
CO3: Solve the var	ious issues of transfer of patent ow	vnership with	reference	e to A	Apply	
International Patent La	W.					
CO4: Analyse the p	present system of Patent Act in India	and changes	aligned	with A	nalyse	
international standards						
CO5: Criticise the p	resent dispute mechanism and how AD	OR supports and	d solutio	n to E	Evaluate	
business issues.						
MAPPING WIT	TH PROGRAMME OUTCOMES ANI	D PROGRAMN	AE SPE	CIFIC	OUTCO	MES

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	М	М	-	-	S	L	М	L	Μ	-	L	L	-	-
CO2	-	-	М	L	М	М	S	L	М	L	L	L	М	М	-
CO3	-	-	М	Μ	-	L	М	-	Μ	L	L	М	-	L	L
CO4	М	-	-	L	М	-	L	-	-	L	L	М	L	-	L
CO5	-	L	-	L	М	L	-	М	L	-	М	L	-	L	-

S- Strong; M-Medium; L-Low

SYLLABUS:

UNIT – I: Introduction To IPRs

Basic concepts of Intellectual Property- Patents Copyrights, Geographic Indicators, History of IPRs- the way from WTO to WIPO- TRIPS, Nature of Intellectual Property, Industrial Property, Technological Research, Inventions and Innovations - Defining Intellectual Property and Patents, Patent Searches and Application.

UNIT – II: New Developments in IPR

Procedure for grant of Patents, TM, GIs, Trade Secrets, Patenting under PCT, Administration of Patent system in India, Patenting in foreign countries - International Treaties and conventions on IPRs, The TRIPs Agreement.

9

9

UNIT - III: Patent Ownership and Transfer

Defining Intellectual Property and Patents, Patent Searches and Application, Patent Ownership and Transfer, Patent Infringement, New Developments and International Patent Law

UNIT – IV: Legislation of IPRs

The Patent Act of India, Patent Amendment Act (2005), Design Act, Trademark Act, Geographical Indication Act, Bayh- Dole Act and, IPR strength in India - Patent Ownership and Transfer, Patent Infringement, New Developments and International Patent Law

UNIT - V: Alternate Dispute Resolution

Alternate Dispute Resolution and Arbitration – ADR Initiatives - Reason for Choosing ADR – Advantages and Disadvantages of ADR - Assessment of ADR's - Litigation - Arbitration - Effective Mechanism for Business Issues.

TEXT BOOK:

4. Deborah E. Bouchoux, Intellectual Property Rights, Delmar, Cengage Learning, 2005. **REFERENCES:**

- V. Sople Vinod, Managing Intellectual Property by (Prentice hall of India Pvt.Ltd), 2006. 1.
- A. Primer, R. Anita Rao and Bhanoji Rao, Intellectual Property Rights, Lastain Book company. Edited by 2. Derek Bosworth and Elizabeth Webster, The Management of Intellectual Property, Edward Elgar Publishing Ltd., 2006.
- 3. Tejaswini Apte, A single guide to Intellectual property rights, Biodiversity and Traditional knowledge.
- WIPO Intellectual Property Hand book. 4.
- 5. Intellectual Property rights and copyrights, Ess Ess Publications.

COUR	SE DESIGNERS:			
S.No	Name of the Faculty	Designation	Department	mail id
1	G. Palaniappan	Associate Professor	Management Studies	palaniappan@vmkvec.edu.in
2	C.M.Muthukrishna	Assistant Professor	Management Studies	Muthukrishna.mba@avit.ac.in

9

9

9

BASIC SCIENCES

17M	ABS01				Subj	ect Title	e			Cate	egory	L	Т	Р	Credit
1/1/1			EN	IGINE	ERING	G MAT	HEMA	TICS		E	S	2	2	0	3
PREA	MBLE														
The dri	ving for	rce in E	Ingineer	ring Ma	themat	ics is th	e rapid	growth	of tech	nology a	ind is de	signed to	provide	the bas	ic tools of
calculu	s mainl	y for tl	ne purp	ose of	modelli	ng the	enginee	ering pr	oblems	mathem	natically	and obta	ining so	lutions.	This is a
foundat	tion cou	irse wh	ich mai	nly dea	ls with	topics	such as	single	variable	and mu	ltivariat	ole calcul	us and pl	lays an	important
role in	the und	erstand	ing of s	cience,	engine	ering, e	conomi	cs and c	compute	er scienc	e, among	g other di	sciplines		
PRE R	EQUIS	SITE													
COUR	SE OB	JECTI	VES												
1	To ide	entify th	ne chara	cteristi	cs of a l	linear s	ystem w	vith Eig	en value	es and E	igen vec	tors.			
2	To im	prove t	heir abi	lity in s	olving	geomet	rical ap	plicatio	ons of di	fferentia	l calculu	ıs			
3	To fin	d a max	ximum	or mini	mum va	alue for	a funct	tion of s	several v	variables	subject	to a give	n constra	int.	
4	To un	derstan	d the in	tegratio	on techr	iques f	or evalu	ating s	urface a	nd volur	ne integ	rals.			
5	Incorp	orate t	he knov	vledge	of vecto	or calcu	lus to si	upport t	heir con	current	and subs	sequent e	ngineerir	ng studio	es
COUR	SE OU	TCOM	IES												
On the	success	ful con	pletion	of the	course,	student	s will b	e able t	0						
CO1. <i>A</i>	Able to	unders	stand th	e syste	m of li	near ec	juations	s arising	g in all	enginee	ring fiel	lds using	matrix	Under	stand
method	s.													Under	stand
CO2.]	Determi	ne the	evolute	and en	velope	for a giv	ven fam	nily of c	urves					Apply	
CO3. A	Apply di	fferent	iation to	o solve	maxima	a and m	inima p	oroblem	s.					Apply	
CO4. (Compute	e the ar	ea and v	volume	of plan	e using	integra	tion						Apply	
CO5. E	Evaluate	the sur	rface an	d volur	ne integ	gral usii	ng Gree	en's, Sto	okes and	Gauss	Diverger	nce theore	ems	Analy	ze
MAPP	ING W	TTH P	ROGR	AMMI	EOUT	COME	S AND	PROG	GRAMN	AE SPE	CIFIC (OUTCO	MES		
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	М	М							М	S	М	М
CO2	S	М	М	М	М							М	S	М	М
CO3	S	М	М	М	М							М	S	М	М
CO4	S	М	М	М	М							М	S	М	М
CO5	S	М	М	М	М							М	S	М	М
S- Stro	ng; M-N	Aedium	n; L-Lov	W					1 1						
SYLLA	ABUS														

MATRICES: Characteristic equation – Eigen values and eigenvectors of a real matrix – Properties of eigenvalues and eigenvectors (Without proof) – Cayley-Hamilton theorem (excluding proof) – Orthogonal transformation of a symmetric matrix to diagonal form.

DIFFERENTIAL CALCULUS: Curvature – Cartesian and Parametric Co-ordinates – Centre and radius of curvature – Circle of curvature – Evolute.

FUNCTIONS OF SEVERAL VARIABLES: Partial Derivatives – Total Differentiation – Maxima and Minima constrained Maxima and Minima by Lagrangian Multiplier Method.

MULTIPLE INTEGRALS: Double integration – change of order of integration – Cartesian and polar coordinates – Area as a double integral – Triple integration.

VECTOR CALCULUS: Directional derivatives – Gradient, Divergence and Curl – Irrotational and solenoidal – vector fields – vector integration – Green's theorem, Gauss divergence theorem and Stoke's theorem (excluding proof).

TEXT BOOKS:

- 1. "Engineering Mathematics I & II", Department of Mathematics, VMKVEC (Salem) & AVIT (Chennai), (2017).
- 2. Dr.A.Singaravelu, "Engineering Mathematics I & II", 23rd Edition, Meenakshi Agency, Chennai (2016).

REFERENCES:

- 1. Veerarajan T., "Engineering Mathematics", Tata McGraw Hill Education Pvt, New Delhi (2011).
- 2. Grewal B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi (2012).
- 3. Kreyszig E., "Advanced Engineering Mathematics", 8th Edition, John Wiley and Sons (Asia) Pvt. Ltd., Singapore (2012).
- 4. Kandasamy P, Thilagavathy K, and Gunavathy K., "Engineering Mathematics", Volumes I & II (10th Edition).

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	Dr.G.Selvam	Asso.Prof	VMKVEC	selvam@vmkvec.edu.in
2	Ms.S.Gayathri	Asst.Prof.Grade I	AVIT	gayathri@avit.ac.in

17PCB	S02				YSICA					Categ	gory	L	Т	Р	Credit
			PAI	RT A -	ENGIN	IEERI	NG PH	IYSICS	5	CO	C	2	0	0	2
domains.	ng Pl Und comr	lerstand nunicat	ling the tion and	concept differ	ots of la ent typ	aser, ty	pes of	lasers,	theprop	agation of	of light t	hrough f	fibers, ap	plications	engineering s of optical sign and to
PRERE(QUIS:	ITE :	NII												
COURSI	E OB	JECTI	IVES												
1	Toı	ecall th	ne prope	erties of	laser a	nd to e	xplain p	principl	es of la	ser					
2	Тоа	assess t	he appl	ications	of lase	r									
3			ne princ												
4			ne appli	•		•									
5							on-dest	tructive	testing						
COURSI					ques us		on des	<u>ii ueti ve</u>	testing						
On the	succe	ssful c	ompleti	on of th	e cours	e, stude	ents wil	l be abl	e to						
CO1. U	nders	stand t	he princ	ciples la	iser, fib	er optic	s and n	on-dest	tructive	testing			Underst	and	
			•	•		•				ctive test	ing equi	oments	Underst	and	
CO3. D	emor	nstrate		orking			•			estructive	0 1 1		Apply		
		et the s fields		al applio	cations	of lase	r, fiber	optics	and No	on-Destru	ictive te	sting in	Apply		
			the wo	•		of var	rious t	ypes o	f laser,	fiber o	ptic and	l Non-	Analyze	2	
MAPPIN	IG W	ТТН Р	ROGR	AMM	E OUT	COME	S ANE) PRO	GRAM	ME SPE	CIFIC	OUTCO	MES		
COS	P O 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S		М									М	М		М
CO2	S		L									М	М		
CO3	S			Μ			Μ					М	М		
CO4	S	М		Μ	Μ	S	М					М	S		М
CO5	S	М	M n; L-Lo ^v									М	Μ		

UNIT-I

LASERS: Laser characteristics - Stimulated Emission – Population Inversion - Einstein coefficients – Lasing action – Types of Laser – Nd:YAG laser, CO2 laser, GaAs laser – Applications of Laser – Holography – construction and reconstruction of a hologram

UNIT-II

FIBRE OPTICS: Principle and propagation of light in optical fibers – numerical aperture and acceptance angle – types of optical fibers (material, refractive index, mode) – Applications: Fiber optic communication system – fiber optic displacement sensor and pressure sensor.

UNIT-III

NON-DESTRUCTIVE TESTING: Introduction – Types of NDT - Liquid penetrant method – characteristics of penetrant and developer - ultrasonic flaw detector – X-ray Radiography: displacement method – X-ray Fluoroscopy.

TEXT BOOK

1. Engineering Physics, compiled by Department of Physics, Vinayaka Mission's Research Foundation (Deemed to be University), Salem.

2. P.K. Palanisamy, Engineering Physics, Scientific Publishers, 2011.

3. Dr.M. N. Avadhanulu, Engineering Physics, S.Chand & Co, 2010.

REFERENCE BOOKS

1. Beiser, Arthur, Concepts of Modern Physics, 5th Ed., McGraw-Hill, 2009.

2. Halliday.D, Resnick.R, Walker.J, Fundamentals of Physics, Wiley & sons, 2013.

3. Gaur R. K. and Gupta S. L., Engineering Physics, DhanpatRai publishers, New Delhi, 2001.

- 4. Avadhanulu.M.N., Arun Murthy.T.V.S, Engineering Physics Vol. I, S.Chand, 2014.
- 5. Rajendran. V, Engineering Physics, Tata McGraw Hill Publication and Co., New Delhi, 2009.

6. Baldev Raj et al. Practical Non-Destructive Testing, Narosa Publications, 2017.

COURSE DESIGNERS						
S.No.	Name of the Faculty	Designation	Department	Mail ID		
1	Dr. C. SENTHIL KUMAR	PROFESSOR	PHYSICS	senthilkumarc@vmkvec.edu.in		
2	Dr. R. SETHUPATHI	ASSOCIATE PROFESSSOR	PHYSICS	sethupathi@vmkvec.edu.in		
3	Dr. G. SURESH	ASSOCIATE PROFESSSOR	PHYSICS	suresh.physics@avit.ac.in		
4	Dr. B.DHANALAKSHMI	ASSOCIATE PROFESSSOR	PHYSICS	dhanalakshmi.phy@avit.ac.in		

17PCBS02	PHYSICAL SCIENCES PART B -ENGINEERING CHEMISTRY	Category	L	Т	Р	С
171 CD502	Semester I (Common to All Branches)	BS	2	0	0	2

Preamble

Objective of this course is to present a better understanding of basic concepts of chemistry and its applications on different engineering domains. It also imparts knowledge on fundamentals of Electrochemistry, Energy storage technologies, properties of water and its treatment methods, classification of fuels, Non conventional sources of Energy and various advanced Engineering materials.

Prerequisite

Not required

Course Objectives

1	To impart basic knowledge in Chemistry so that the student will understand the engineering concept
2	To familiar with electrochemistry and Battery and fuel Cells
3	To lay foundation for practical applications of water softening methods and its treatment methods in engineering aspects.
4	To inculcate the knowledge of fuels and advanced material.

Course Outcomes

After the successful completion of the course, learner will be able to

CO1.	Describe the electrochemistry, batteries and working principle of	Understand
	energy storage devices	
CO2.	Estimate the hardness of water	Apply
CO3.	Identify suitable water treatment methods	Analyze
CO4.	Outline the important features of fuels and advanced materials	Analyze

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO	PS	PS	PS											
	1	2	3	4	5	6	7	8	9	10	11	12	O1	O2	O3
CO6.	S	Μ	-	М	-	S	S	S	-	-	L	М	М	-	М
CO7.	S	S	Μ	-	-	Μ	Μ	Μ	-	-	-	Μ	Μ	Μ	Μ
CO8.	S	S	М	-	-	М	S	Μ	-	-	-	М	М	Μ	М
CO9.	S	-	-	-	L	L	М	L	-	-	-	S	-	-	М

S- Strong; M-Medium; L-Low

Electrochemistry, Batteries and Fuel cells

Electrode potential - Nernst equation – Electrodes (SHE, Calomel and Glass) - cells - EMF measurement.

Primary battery (Daniel and dry cell) – secondary battery (lead Acid storage battery and Nickel-Cadmium battery) – Fuel cell (H₂-O₂ fuel cell)

Water Technology and Corrosion

Sources of water - impurities - Hardness and its determination (problems to be avoided) -

boiler troubles - water softening (Zeolite & Demineralisation) - Domestic water treatment -

Desalination (Electrodialysis & Reverse Osmosis).

Fuels And Chemistry of Advanced Materials

Classification of Fuels (Solid, Liquid, Gaseous, Nuclear and Bio fuels) - Calorific Value of a

fuel –Non Petroleum Fuels –Non conventional sources of Energy – combustion.

Basics and Applications:-Organic electronic material, shape memory alloys, polymers (PVC, Teflon, Bakelite)

TEXT BOOKS

1. Engineering Chemistry by prepared by Vinayaka Mission's Research Foundation, Salem.

REFERENCE BOOKS

- 1. A text book of Engineering Chemistry by S.S. Dara, S.Chand & company Ltd., New Delhi
- 2. Engineering Chemistry by Jain & Jain, 15th edition Dhanpatrai Publishing Company (P) Ltd., New Delhi
- 3. A text book of Engineering Chemistry by Shashi Chawla, Edition 2012 Dhanpatrai & Co., New Delhi.
- 4. Engineering Chemistry by Dr. A. Ravikrishnan, Sri Krishna Publications, Chennai.

S. No	Name of the Faculty	Designation	Department	Mail ID
1.	Dr. V. Anbazhagan	Professor	Chemistry	anbu80@gmail.com
2.	Mr. A. Gilbert Sunderraj	Assistant	Chemistry	asmgill80@gmail.com
		Professor		
3.	Dr. R. Nagalakshmi	Professor	Chemistry	nagalakshmi.chemistry@avit.ac.in
4.	Dr.K.Sanghamitra	Associate	Chemistry	sanghamitra.chemistry@avit.ac.in
		Professor		

Course Designers:

17PHBS05	SMART MATERIALS	Category	L	Т	Р	Credit
179418505		Basic Sciences	3	0	0	3

PREAMBLE

Smart Materials gives an outlook about various types of materials having potential application in Engineering and Technology. In particular, Students learn about Smart Materials and their applications, Properties of Crystalline Materials & Nanomaterials, Characteristics of Magnetic materials. They also get a clear picture about superconducting materials.

	REQUISITE : NIL						
COU	IRSE OBJECTIVES						
1	To explain the fundamental properties and classification of smart materials, crystalline materials, Nano materials, Magnetic materials and Super conducting materials.						
2	To paraphrase the basic crystalline structure and its properties.						
3	To illustrate the synthesis and fabrication of Nano materials.						
4	To predict the application of smart materials, crystalline materials, Nano conducting materials.	materials, Magnetic materials and Super					
5	To analyze the various parameters of crystalline materials.						
COU	URSE OUTCOMES						
On th	he successful completion of the course, students will be able to						
CO1.	Restate the properties of various materials.	Understand					
CO2.	Summarize the various structures of materials.	Understand					
CO3.	3. Predict the applications of various materials to designing equipments. Apply						
CO4.	Illustrate the properties of materials to designing equipments. Apply						
CO5.	Calculate the crystalline parameters of the materials.	Analyze					
MAF	PPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPE	CIFIC OUTCOMES					

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	S	М	S				М			S	S		
CO2	S	Μ	S	Μ	S				Μ			Μ	S	М	
CO3	S	S	S	S	S				S			Μ	S	S	Μ
CO4	S	Μ	S	Μ	S				Μ			Μ	S	S	М
CO5	М	S	S	М	М				S			Μ	Μ	Μ	

S- Strong; M-Medium; L-Low

SYLLABUS

SMART MATERIALS: Shape Memory Alloys (SMA) – Characteristics and properties of SMA, Application, advantages and disadvantages of SMA. Metallic glasses – Preparation, properties and applications.

CRYSTALLINE MATERIALS: Unit cell – Bravais lattice – Miller indices – Calculation of number of atoms per unit cell – atomic radius – coordination number – packing factor for SC, BCC, FCC, HCP structures.

NANO MATERIALS: Nanophase materials – Top-down approach - Mechanical Grinding - Lithography - Bottom-up approach – Sol-gel method – Carbon nanotubes – Fabrication – applications.

MAGNETIC MATERIALS: Basic concepts – Classification of magnetic materials – Domain theory – Hysteresis – Soft and Hard magnetic materials.

SUPERCONDUCTING MATERIALS: Superconducting phenomena – properties of superconductors – Meissner effect – isotope effect – Type I and Type II superconductors – High Tc Superconductors – Applications of superconductors.

TEXT BOOK:

Mani P, Engineering Physics II, Dhanam Publications, 2018.

REFERENCES:

- 1. Pillai S.O., Solid State Physics, New Age International (P) Ltd., publishers, 2018.
- 2. Senthilkumar G. Engineering Physics II. VRB Publishers, 2018.

COURSE DESIGNERS

COUN				
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. S. MOHAMMED HARSHULKHAN	Asst.Prof	Physics	harshulkhan@vmkvec.edu.in
2	Mr. R. SAKTHI GANAPATHY	Asst.Prof	Physics	sakthiganapthy@vmkvec.edu.in
3	Dr .G. LATHA	Professor	Physics	latha.physics@avit.ac.in
4	Dr. R. N. VISWANATH	Professor	Physics	viswanath.physics@avit.ac.in

17CHBS01	Environmental Science & Engineering	Category	L	Т	Р	С
17 CH10501	(Common to All Branches)	BS	3	0	0	3

Preamble

Environmental science and Engineering is an interdisciplinary field that integrates physical, chemical, biological, information sciences and provides the basic knowledge of structure and function of ecosystem and better understanding of natural resources, biodiversity and their conservation practices. The course helps to create a concern for our environment that will generate pro-environmental action, including activities we can do in our daily life to protect it. Furthermore, it deals the social issues and ethics to develop quality engineer in our country. **Prerequisite**

Not required

Course Objectives

1	Applying Science and Engineering knowledge to protect environment
2	To provide comprehensive insight in natural resources and protect natural resources
3	To create awareness on the various pollutions and their impact.
4	To educate the ways and means to manage natural calamities
5	To impart fundamental knowledge on human welfare measures
Course	• Outcomes:

After Successful completion of this course, the students will be able to:

CO1.	Comprehend the impact of engineering solutions in a global and	Understand
	societal context	
CO2.	Illustrate the contemporary issues that results in environmental	Understand
	degradation and would attempt to provide solutions to overcome	
	those problems	
CO3.	Illustrate the importance of ecosystem and biodiversity	Apply
CO4.	Practice to improve the environment and sustainablity	Apply
CO5.	Conclude the importance of conservation of resources.	Analyze
CO6.	Estimate the important role of IT in healthy environment for future	Analyze
	generations	

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO						
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO10.	S	Μ	-	-	-	Μ	S	S	Μ	Μ	-	S	М	S	М
CO11.	S	-	-	-	-	S	S	S	-	-	-	S	Μ	S	М
CO12.	S	-	-	-	-	Μ	S	Μ	L	-	-	S	-	S	-

CO13.	S	-	-	-	-	Μ	S	S	Μ	Μ	-	S	Μ	S	Μ
CO14.	S	-	-	I	-	Μ	S	S	Μ	Μ	-	S	Μ	S	Μ
CO15.	S	-	-	-	-	Μ	S	S	Μ	Μ	-	S	М	S	Μ

S- Strong; M-Medium; L-Low

SYLLABUS

ENVIRONMENT AND NATURAL RESOURCES

Environment - Definition, scope & importance - Public awareness- Forest resources, mineral resources, water resources, food resources, energy resources (uses, over -exploitation & adverse effects in each case) - Scope & role of environmental engineers in conservation of natural resources - Sustainability development.

ECOSYSTEMS AND BIO – DIVERSITY

Ecosystem - Definition, structure and function - Energy flow -Ecological succession - food chain, food web, ecological pyramids- Introduction, types, characteristics, structure and function of forest, grassland, desert and Aquatic ecosystems - Bio - Diversity :values and uses, hotspots, threats and conservation.

ENVIRONMENTAL POLLUTION

Pollution - Definition, man made impacts and control measures of air, water and land pollution - Water quality standards & characterization - Importance of sanitation -Nuclear hazards – Hazardous waste management : Solid waste, waste water and biomedical waste - Prevention of pollution and role of individual – Disasters management : Floods, earthquake, cyclone and land slides - Clean technology options.

SOCIAL ISSUES AND ENVIRONMENT

Urban problems related to energy - Water conservation – Resettlement and rehabilitation of people - Environmental ethics - Climate change - Global warming - Acid rain - Ozone depletion-Waste land reclamation, Environment Protection Act for air, water, wild life and forests - Pollution Control Board.

HUMAN POPULATION AND ENVIRONMENT

Population growth - Population explosion - Family welfare programme - Environment & human health - Human rights – Value education - Women and child welfare, Role of information technology in environment and human health.

TEXTBOOK

1. Environmental Science and Engineering by Dr.A. Ravikrishnan, Sri Krishna Publications, Chennai.

REFERENCES

- 1. Wager K.D. "Environmental Management", W.B. Saunders Co. Philadelphia, USA, 1998.
- 2. Bharucha Erach "The Biodiversity of India" Mapin Publishing Pvt Ltd, Ahmedabad, India
- 3. Trivedi R.K. "Handbook of Environmental Laws", Rules, Guidelines, Compliances and tandards Vol I & II, Enviro media.
- 4. Dr. J. Meenambal, Environmental Science and Engineering, MJP Publication, Chennai
- 5. Gilbert M. Masters : Introduction to Environmental Engineering and Science, Pearson Education Pvt Ltd., II Edition, ISBN 81-297-0277-0, 2004

Course Designers:

S. No	Name of the Faculty	Designation	Department	Mail ID
1.	Dr. V. Anbazhagan	Professor	Chemistry	anbu80@gmail.com
2.	Mr. A. Gilbert Sunderraj	Assistant	Chemistry	asmgill80@gmail.com
		Professor		
3.	Dr. R. Nagalakshmi	Professor	Chemistry	nagalakshmi.chemistry@avit.ac.in
4.	Dr.K.Sanghamitra	Associate	Chemistry	sanghamitra.chemistry@avit.ac.in
		Professor		

PHYSICAL SCIENCES LAB: PART A - REAL AND VIRTUAL LAB IN PHYSICS

Category	L	Т	Р	Credit	
CC	0	0	2	1	

PREAMBLE

In this laboratory, experiments are based on the calculation of physical parameters like young's modulus, rigidity modulus, viscosity of water, wavelength of spectral lines, thermal conductivity and band gap. Some of the experiments involve the determination of the dimension of objects like the size of a microparticle and thickness of a thin wire. In addition to the above real lab experiments, students gain hands-on experience in virtual laboratory.

PREREQUISITE

		N	IL												
COUR	SE OB	JECTI	VES												
1	To im	part ba	sic skill	s in tak	ing read	ding wi	th preci	ision of	physics	s experin	nents				
2	To inc	culcate	the hab	it of ha	ndling e	equipmo	ents app	propriat	ely						
3	To ga	in the k	nowled	ge of p	racticin	g exper	riments	through	n virtua	llaborate	ory.				
4	To kn	ow the	importa	ance of	units										
5	To ob	tain res	ults wit	h accur	acy										
COUR	SE OU	TCOM	IES												
On th	ne succe	essful co	ompleti	on of th	e cours	e, stude	ents wil	l be abl	e to						
CO16			gnize e physic						perform	ning th	e exper	iments,	Underst	and	
CO17	7.	Opera	ate the e	equipme	ents wit	h preci	sion						Apply		
C018	3.	Practi	ice to ha	andle th	e equip	ments	in a sys	tematic	manne	r			Apply		
C019	Э.	Demo	onstrate	the ext	perimen	ts throu	igh virt	ual labo	oratorv				Apply		
CO20).		late the				0		5				Analyze	2	
							S AND		DAM	ME SPE		ουτεο	MES		
	1					1								DGOO	DCO2
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	м	м	c				М			м	м		м
CO2 CO3	S S	S	M	M	S				IVI			M	M		M
<u>CO3</u> CO4	S	S	М	М	S							S	М		М
CO5	S	S	1/1	111	5										
	ng; M-N		n; L-Lo	W	1	1	<u>.</u>	1	1	1	1	1	1	1	
SYLL 1. 2. 3. 4.	Young Rigidi Viscos	ty modu ty of a	ulus of ulus of liquid trasonio	a wire - - Poise	Torsio uille's n	nal Pen nethod	dulum	c Interf	eromete	er					

- 5. Particle size determination using Laser
- Wavelength of spectral lines grating Spectrometer 6.
- Thickness of a wire Air wedge Method 7.
- 8. Thermal conductivity of a bad conductor - Lee's disc

- 9. Band gap determination of a thermistor Post Office Box
- 10. Specific resistance of a wire Potentiometer

LAB MANUAL

Physical Sciences Lab: Part A – Real And Virtual Lab In Physics Manual compiled by Department of Physics, Vinayaka Missions Research Foundation (Deemed to be University), Salem.

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. C. SENTHIL KUMAR	PROFESSOR	PHYSICS	senthilkumarc@vmkvec.edu.in
2	Dr. R. SETHUPATHI	ASSOCIATE PROFESSSOR	PHYSICS	sethupathi@vmkvec.edu.in
3	Dr. G. SURESH	ASSOCIATE PROFESSSOR	PHYSICS	suresh.physics@avit.ac.in
4	Dr. B.DHANALAKSHMI	ASSOCIATE PROFESSSOR	PHYSICS	dhanalakshmi.phy@avit.ac.in

17PCBS81	PHYSICAL SCIENCES PART B - ENGINEERING CHEMISTRY LAB	Category	L	Т	Р	С
	Semester I (Common to All Branches)	BS	0	0	2	1

Preamble

The main objective of this course is to develop the intellectual and psychomotor skills of the students by imparting knowledge in water technology and quantitative analysis.

Prerequisite

Not required

Course Objectives

004100	
1	To impart basic skills in Chemistry so that the student will understand the engineering concept.
2	To inculcate the knowledge of water and electrochemistry.
3	To lay foundation for practical applications of chemistry in engineering aspects.
Course	Outcomes

After the successful completion of the course, learner will be able to

CO1.	Estimate the chemical properties of water	Apply
CO2.	Determine the presence of various elements in the water	Analyze
CO3.	Calculate the strength of acids, oxidizing and reducing agents	Analyze

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
										0	1	2	1	2	3
CO21.	S	М	М	-	L	М	М	S	-	-	-	М	S	М	М
CO22.	S	М	М	-	L	М	М	L	-	-	-	М	S	М	М
CO23.	S	S	М	-	L	М	М	М	-	-	-	М	S	М	М

S- Strong; M-Medium; L-Low

SYLLABUS

- 1. Determination of Hardness by EDTA method
- 2. Estimation of Hydrochloric acid by conductometric method
- 3. Acid Base titration by pH method
- 4. Estimation of Ferrous ion by Potentiometric method
- 5. Determination of Dissolved oxygen by Winkler's method
- 6. Estimation of Sodium by Flame photometer
- 7. Estimation of Copper from Copper Ore Solution
- 8. Estimation of Iron by Spectrophotometer

TEXT BOOKS

2. Laboratory Manual on Engineering Chemistry prepared by Vinayaka Mission's Research Foundation, Salem.

REFERENCE BOOKS

1. Laboratory Manual on Engineering Chemistry, K. Bhasin S, Dhanpat Rai Publishing Co Pvt Ltd

Course Designers:

S. No	Name of the Faculty	Designation	Department	Mail ID
1.	Dr. V. Anbazhagan	Professor	Chemistry	anbu80@gmail.com
2.	Mr. A. Gilbert Sunderraj	Assistant	Chemistry	asmgill80@gmail.com
		Professor		
3.	Dr. R. Nagalakshmi	Professor	Chemistry	nagalakshmi.chemistry@avit.ac.in
4.	Dr.K.Sanghamitra	Associate	Chemistry	sanghamitra.chemistry@avit.ac.in
		Professor		

	Subject Title	Category	L	Т	Р	С
17CHBS04	INDUSTRIAL MATERIAL	BS	3	0	0	3

PREAMBLE: The intellectual origins of materials from the Enlightenment, when researchers began to use analytical thinking from chemistry, physics and engineering to understand ancient, phenomenological observations in metallurgy and mineralogy. Materials science still incorporates elements of physics, chemistry, and engineering.

Prerequisite

Not required

Course Objectives

1	To impart fundamental knowledge relating to selection of material on basis of their application and service conditions.					
2	To classify the Engineering Materials and their relevant applications					
3	To Categorize the basics in composites, types and applications					
4	To demonstrate the various forms of Smart Materials and its applications.					
5	To lay foundation for applications of materials in various field.					
Course	Outcomes:					

After Successful completion of this course, the students will be able to:

CO1.	Account how for materials to be selected in industry	understand
CO2.	Identify engineering materials, their properties and applications	understand
CO3.	Summarize the properties and applications of composites	understand
CO4.	Illustrate the various forms of smart materials and its applications	Apply
CO5.	Predict the failure of components due to wrong selection of materials and extend their knowledge in applications of materials in various field	Analyze

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO	РО	PO	PS0	PS0	PS0									
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO24.	S	S	S	Μ	-	-	-	-	-	-		-	Μ	L	S
CO25.	S	S	Μ	L	-	-	-	-	-	-	-	-	L	-	S
CO26.	S	S	Μ	L	-	-	-	-	-	-	-	-	Μ	-	-
CO27.	S	Μ	Μ	L	-	-	-	-	-	-	-	-	Μ	-	S
CO28.	Μ	S	S	S	L	-	-	-	-	-	-	-	Μ	Μ	S

S- Strong; M-Medium; L-Low

Selection of materials:

Service requirement, Structure - Property correlations and reappraisal of the role of crystal structure and structural defects on properties.

Metallic materials:

Engineering Ferrous materials, Aluminium, Copper, Nickel, Magnesium, Titanium alloys. Phase diagrams, properties and typical alloys with reference to their applications.

Composite materials:

Fiber reinforced, laminated and dispersed materials with metallic matrix of aluminium, copper and Titanium alloys and with non-metallic matrix of unsaturated polyesters and epoxy resins (properties and applications of these materials).

Smart materials:

Shape Memory Alloys, Varistors and Intelligent materials for bio-medical applications, Polymers and Plastics from industry - properties and applications of these materials.

Case study of the failure of components due to wrong selection of materials: Study and analysis of appropriate material for some specific application like aerospace, boiler tubes, turbine blades, automobiles and infrastructures (building and bridges).

TEXT BOOKS:

1.Engineering Material Technology, 5th edition, by James A. Jacobs & Thomas F. Kilduff. Prentice Hall. Copyright 2005.

2.Callister's Materials Science and Engineering by WD. Callister Jr., Wiley India Pvt. Ltd., 2010 **REFERENCE:**

1. Foundations of Materials Science and Engineering, 3rd edition, by William F. Smith. McGraw Hill, Copyright 2004.

2. Engineering materials1: An introduction to properties, applications and design by Michael F Ashby and David R H Jones, Elsevier Butterworth Heinmann Publishers, 2007

Course Designers:

S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	Dr. R. Nagalakshmi	Professor	Chemistry/AVIT	nagalakshmi.chemistry@avit.ac.in
2	A. Gilbert Sunderraj	Asst Professor	Chemistry /VMKVEC	asmgill80@gmail.com

17M	ABS04	1	MAT	HEM.			MECI	HANIO	CAL	Categ	gory	L	Т	Р	Credit
1/101	AD50-	•		SCIENCES		ES	5		BS	5	2	2	0	3	
develop such as	Diffe oment Heat	rential of rigo flow e	orous lo equatio	ogical t ns of c	hinkin one din	g and a nension	analytic n and t	cal skil wo dir	ls of the nension	e studer ns. Stati	nt for so stical m	olving di nethods	fferent k	cinds of ortant to	asizes the problems ol, which ed data.
PRER Engine			natics ((17MA	BS01)										
COUR															
1	To for	rmulat	e and s	olve pa	artial d	ifferen	tial equ	ations							
2	To formulate and solve partial differential equations. To represent a periodic function as a Fourier series.														
3	To be familiar with applications of partial differential equations.														
4	To be familiar with random variables and describe the properties of discrete and continuous distribution functions														
5	To provide an understanding for the graduate on statistical concepts to include measures of central tendency, curve fitting, correlation and regression.														
COUR	SE OU	UTCO	MES												
On the	succes	sful co	mpleti	on of t	he cou	rse, stu	dents v	will be	able to						
CO1. E	Explain	the m	ethodo	logy o	f formi	ng and	solvin	g parti	al diffe	rential e	quation	IS.		Appl	У
CO2. T			-		ctions	as Fo	urier s	eries o	of sine	and co	sines a	nd calc	ulate the	Appl	У
CO3. Series.	Solve p	partial	differe	ential e	quation	ns like	wave	equation	ons and	l heat fl	ow equ	ation by	/ Fourier	· Appl	у
CO4. (Classify	the ra	andom	variab	les to d	letermi	ne the	approp	riate di	stributio	ons.			Anal	yze
CO5. A			-				rve for	the g	iven da	ata and	evaluat	e the co	orrelation	¹ Anal	yze
MAPP	ING V	VITH	PROG	RAM	ME O	UTCO	MES	AND F	ROG	RAMM	E SPEC	CIFIC C	OUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	М	М	М							М	S	М	
CO2	S	S	М	М	М							М	S	М	
CO3	S	S	М	М	М							М	S	М	М
CO4	S	S	M	M	Μ							M	S	S	
CO5	S	S	Μ	Μ	Μ							Μ	S	S	М

S- Strong; M-Medium; L-Low

SYLLABUS

PARTIAL DIFFERENTIAL EQUATIONS: Formation - Solutions of standard types f(p,q)=0, clairauts form, f(z,p,q)=0, f(p,x)=g(q,y) of first order equations - Lagrange's Linear equation - Linear partial differential equations of second and higher order with constant coefficients.

FOURIER SERIES: Dirichlet's conditions – General Fourier series – Half -range Sine and Cosine series – Parseval's identity – Harmonic Analysis.

BOUNDARY VALUE PROBLEMS: Classification of second order linear partial differential equations – Solutions of one – dimensional wave equation, one – dimensional heat equation – Steady state solution of two – dimensional heat equation – Fourier series solutions in Cartesian coordinates.

STANDARD DISTRIBUTIONS: Moment generating function of random variables – Binomial – Poisson – Geometric – Uniform – Exponential – Gamma and Normal Distributions and their Properties (Mean Variance and Problems).

STATISTICS: Measures of central tendency, Curve fitting – Straight line and Parabola by least square method, Correlation, Rank correlation and Regression.

TEXT BOOKS:

- 1. Dr.A.Singaravelu, "Transforms and Partial differential Equations", 18th Edition, Meenakshi Agency, Chennai (2013).
- 2. A.Singaravelu, "Probability and Statistics", Meenakshi Agencies, Chennai (2016)
- 3. S.C.Gupta, V.K.Kapoor, "Fundamentals of mathematical statistics", Sultan Chand & Sons (2006).

REFERENCES:

- 1. T. Veerarajan, "Engineering Mathematics" (for semester III), Third Edition, Tata McGraw-Hill Publishing Company limited (2011).
- 2. Grewal, B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi (2012).
- 3. Kreyszig, E., "Advanced Engineering Mathematics", 8th Edition, John Wiley and Sons (Asia) Pvt Ltd., Singapore (2012).
- 4. T. Veerarajan, "Probability, Statistics and Random processes" 2nd Edition, Tata McGraw-Hill Publishing Company Ltd., New Delhi (2006).
- 5. Johnson. R.A., "Miller & Freund's Probability and Statistics for Engineers", Sixth Edition, Pearson education, Delhi, 2000. (Chapters 7, 8, 9, 12).

COURSE DESIGNERS

S.No	Name of the Faculty	Designation	Name of the College	Mail ID		
1	Ms.M.Usha	Assistant professor	VMKVEC	usha@vmkvec.edu.in		
2	Ms.S.Sarala	Asst.Prof. grade II	AVIT	sarala@avit.ac.in		

1 7 N	IABS11	1	Ň			L MEI			2	Categ	gory	L	Т	Р	Credit
1/10		L		MEC	HANI	CAL S	CIEN	CES		BS	5	2	2	0	3
PREA	MBLE														
						•			0	01				-	opropriate
															aduate of problems
										ms and i					
	EQUIS														
U	neering					,	DC (1)								
	nematic RSE OI				lences	(1/WIA	10304)								
1					al solut	ion of	equatio	ne							
2	To familiar with numerical solution of equations To be get exposed to finite differences and interpolation														
3															
_	To be thorough with the numerical Differentiation and integration														
4	To find numerical solutions of ordinary differential equations														
5 To find numerical solutions of partial differential equations															
	RSE OU														
	succes														
	Solve the field of	•			0	aic equ	ations	and si	ngle no	on linear	• equation	ons arisi	ng in th	e Appl	У
CO2.	Apply r	nethod	ls to fir	nd inter	rmedia	te num	erical	value &	k polyr	nomial o	f numer	ical data	ì.	Appl	У
CO3.	Apply r	nethod	ls to fir	nd integ	gration	, deriva	atives o	of one	and two	o variab	le funct	ions.		Appl	у
CO4 .	Solve th	ne initi	al valu	e prob	lems u	sing sir	ngle ste	ep and	multist	ep meth	ods.			Appl	у
CO5.	Solve th	ne bou	ndary v	value p	roblem	ns using	g finite	differe	ence m	ethods.				Appl	у
MAPI	PING V	VITH	PROG	RAM	ME O	UTCO	MES	AND I	PROG	RAMM	E SPE(CIFIC C	OUTCO	MES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	М	М	М							М	S	М	М
CO2	S	S	М	М	М							М	S	М	М
CO3	S	S	М	М	М							М	S	М	М
CO4	S	S	S	S	М							М	S	М	М
CO5	S	S	S	S	М							М	S	М	М
S- Str	S- Strong; M-Medium; L-Low														

SOLUTION OF EQUATIONS AND EIGEN VALUE PROBLEMS: Method of false position, Newton-Raphson method for single variable, Solutions of a linear system by Gaussian, Gauss-Jordan, Jacobian and Gauss- Seidel methods. Inverse of a matrix by Gauss-Jordan method. Eigen value of a matrix by Power Method.

INTERPOLATION AND APPROXIMATION: Interpolation with Newton's divided differences, Lagrange's polynomial, Newton forward and backward differences, central difference Formula (Stirling's and Bessel's).

NUMERICAL DIFFERENTIATION AND INTEGRATION: Numerical differentiation with interpolation polynomials, Numerical integration by Trapezoidal and Simpson's (both 1/3rd and 3/8th) rules. Romberg's rule, Two and Three point Gaussian quadrature formula. Double integrals using Trapezoidal and Simpson's rule.

INITIAL VALUE PROBLEMS OF ODE: Single Step Methods - Taylor Series, Euler and Modified Euler, Runge-Kutta method of fourth order -first and second order differential equations. Multistep Methods - Milne and Adam's-Bash forth predictor and corrector methods.

BOUNDARY VALUE PROBLEMS FOR ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS: Finite difference solution for the second order ordinary differential equations, Finite difference solution for one dimensional heat equation (both implicit and explicit). One dimensional wave equation and two dimensional Laplace and Poisson equations.

TEXT BOOKS:

- 1. S.K Gupta, "Numerical Methods for Engineers", New Age International Pvt. Ltd. Publishers, 2015.
- 2. S. R. K. Iyengar, R. K. Jain, Mahinder Kumar Jain, "Numerical methods for Scientific and Engineering Computations", New Age International publishers, 6th Edition, 2012.
- 3. T. Veerarajan, T.Ramachandran, "Numerical Methods with Programs in C and C++", Tata McGraw-Hill (2004)

REFERENCES:

- 6. Joe D. Hoffman, Steven Frankel, "Numerical Methods for Engineers and Scientists", 3 rd Edition, 2015, Tata Mc-Graw Hill.(New York).
- 7. Steven C. Chapra, Raymond P. Canale, "Numerical Methods for Engineers", MC Graw Hill Higher Education, 2010.

S.No	Name of the Faculty	Designation	Name of the College	Mail ID		
1	Dr. M.Vijayarakavan	Asso.Prof	VMKVEC	vijayarakavan@vmkvec.edu.in		
2	Dr.A.K.Thamizhsudar	Asso.Prof. grade II	AVIT	thamizhsudar@avit.ac.in		

COURSE DESIGNERS

CORE COURSES

17MECC02 ENGINEERING	Category	L	Т	Р	Credit
THERMODYNAMICS	CC	2	1	0	3

Preamble

Thermodynamics is a branch of science that deals with energy and its transfer. All activities in nature involve some interaction between energy and matter. Engineering thermodynamics plays a major part in the design and analysis of automotive engines, rockets, jet engines, refrigeration and air-conditioning systems, and power plants, etc. Therefore, developing a good understanding of the basic principles of engineering thermodynamics is essential for mechanical engineers. This course deals with the basic principles and concepts of thermodynamics, laws of thermodynamics, energy and entropy of ideal gas, steam, and mixture of gases.

Prerequisite

NIL

Course Objective

Cou	Course Objective								
1	To provide the basic concepts and laws of thermodynamics.								
2	To provide an understanding about the concept of enthalpy and entropy in thermal systems.								
3	To discuss the working principle of steam cycles and pure substances.								
4	To detail about the properties of gas and vapor mixtures								
5	To discuss about fuels and combustion.								
Cou	se Outcomes: On the successful completion of the course, st	tudents will be able to							
CO1	Understand the fundamental concepts and laws of thermodynamics.	Understand							
CO2	Understand the concepts of thermodynamic processes for various working fluids.	Understand							
CO3	Determine the basic properties of working fluid while undergoing processes in thermodynamic systems	Apply							
CO4	Derive the governing equations of behaviour of gases and vapours	Analyze							
CO5	CO5. Determine the amount of air required for combustion of fuels Analyze and analysis of the products.								
Map	Mapping with Programme Outcomes and Programme Specific Outcomes								
СО	PO PO<	PO12 PSO PSO PSO 1 2 3							

C01	S	Μ	М	L	_	-	-	-	-	-	-	-	S	
CO2	S	М	М	L	-	-	-	-	-	-	-	-	S	
CO3	S	М	М	М	-	-	-	-	-	-	-	-	S	
CO4	S	S	М	Μ	-	-	-	-	-	-	-	-	S	
CO5	S	S	S	М	-	-	-	-	-	-	-	-	S	
7 7	-			_	_		-							

S- Strong; M-Medium; L-Low

SYLLABUS

BASIC CONCEPTS AND FIRST LAW OF THERMODYNAMICS

Definition of Thermodynamics, macroscopic and microscopic approach, thermodynamic systems and surroundings, thermodynamic properties, thermodynamic equilibrium, state, path, process and cycle, reversible and irreversible processes, work, energy, and heat, state postulate and Zerothlaw of thermodynamics, thermometer and thermometric property, temperature Scales.Internal energy, First law of thermodynamics, perpetual motion machine of the first kind PMM I, application of first law to non-flow processes or closed system and related problems, application of first law to steady flow process, steady flow energy equation. Problems

SECOND LAW OF THERMODYNAMICS

Limitations of First law of thermodynamics, thermal reservoir, heat engine, refrigerator, and heat pump, statements of Second law of thermodynamics, perpetual motion machine of II Kind - PMM II, Carnot cycle, , Carnot theorem, corollary of Carnot's theorem, Clausius inequality. Problems on heat engine, refrigerator and heat pump. Entropy, Temperature – entropy diagram, entropy changes for a closed system. Problems on entropy change calculations in different processes. Availability and irreversibility , available and unavailable energy, availability in non-flow and steady flow systems. Problems on irreversibility and

PURE SUBSTANCES AND THERMODYNAMIC RELATIONS

Definition of pure substance, phase change of a pure substance, p-T diagram, p-V-T Surface, phase change terminology, property diagram in common use. Formation of steam, sensible heat, latent heat, dryness fraction, enthalpy, superheated steam, thermodynamic properties of steam and steam table, work, internal energy, entropy calculation, Mollier diagram, calorimeters for determination of dryness fraction. Problems determining thermodynamic properties of steam.

Thermodynamic relations : Thermodynamic potentials, thermodynamic gradients, general thermodynamics relations, entropy (Tds) equations, equations for internal energy and enthalpy, equation of state, coefficient of expansion and compressibility, specific heats, Joule Thomson coefficient, Clausius –Claperyon equation, Maxwell's relations.

GASES AND VAPOUR MIXTURES

Ideal gas, equation of state for a perfect gas, Joules law, internal energy, enthalpy & specific heat capacities of an ideal gas, real gases, Van der waals equation – Amagats experiment, the cooling effect. Law of corresponding states, reduced properties, compressibility chart. Problem on calculation of properties ideal and real gases. Daltons law, Gibbs – Daltons law, volumetric analysis of a gas mixture, apparent molecular weight and gas constant, specific heats of a gas mixture, adiabatic mixing of perfect gases. Problems on gas mixture property values.

FUELS AND COMBUSTION

Characteristics of an ideal fuel, properties of fuel, flash point, fire point, cloud point, pour point, viscosity, combustion reaction and combustion analysis, theoretical air and excess air, stoichiometric air fuel ratio, analysis of combustion products, internal energy and enthalpy of formation, calorific value, determination of calorific value of fuels, Junkers gas calorimeter, Orsat apparatus, exhaust gas analyser, problem on calculation of air fuel ratio.

TEXT BOOK:

- 1. P.K.Nag, Engineering Thermodynamics, Mc Graw Hill, 5th edition,2013.
- 2. Yunus. A.Cengel et al, Thermodynamics: An Engineering Approach, McGH, 8th Edn,

REFERENCES:

1. R.K.Rajput, A text book of Engineering Thermodynamics, Laxmi Publications, 5th Edn, 2016.

2. D.S.Kumar, Engineering Thermodynamics : Principles and Practices, Laxmi Publications, Katsun Books 2012

Cours	se Designers			
SL.N	Faculty Name	Designation	Department/ Name of the College	Email id
1	N.Lakshminarayanan	Associate Professor	Mechanical/AVIT	nlakshiminarayanan@avit.a c.in
2	R.Anandan	Associate Professor	Mechanical/VMK VEC	anandan@vmkvec.edu.in

² dimension														
This course provides the basic knowledge about the behaviour of the bodies which are under static and Jnamic conditions. Prerequisite NIL Objective 1 To explain the basic laws of mechanics and forces 2 To relate the basic concepts and application of rigid bodies under equilibrium in two dimension														
NIL Course Objective 1 To explain the basic laws of mechanics and forces 2 To relate the basic concepts and application of rigid bodies under equilibrium in two dimension														
1 To explain the basic laws of mechanics and forces 2 To relate the basic concepts and application of rigid bodies under equilibrium in two dimension														
2 To relate the basic concepts and application of rigid bodies under equilibrium in two dimension														
² dimension														
o solve problems involving Friction and Rigid body dynamics														
To solve problems involving Friction and Rigid body dynamics.														
To analyze the dynamics of particles problems.														
Course Outcomes: On the successful completion of the course, students will be able to														
CO1. Identify the engineering problems using the concept of static Understand equilibrium														
CO2. Solve problems of rigid bodies under equilibrium in two dimension Apply														
CO3. Determine the Centroid, moment of inertia and mass moment of inertia Apply of various sections.														
CO4.Solve frictional and rigid body application problems.Apply														
CO5. Analyze engineering systems using the concept of dynamic Analyze equilibrium														
Mapping with Programme Outcomes and Programme Specific Outcomes														
CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS														
CO1 S M L L S - I														
CO2 S S M M - M S - I														
CO3 S M M M - M S - I														
CO4 S S M M - L S - I														
CO5 S S L S - S S - I														
S- Strong; M-Medium; L-Low														

BASICS & STATICS OF PARTICLES

Introduction - Units and Dimensions - Laws of Mechanics - Lame's theorem. Parallelogram and triangular law of forces - Coplanar Forces - Resolution and Composition of forces - Equilibrium of a particle - Forces in space - Equilibrium of a particle in space - Equivalent systems of forces - Principle of transmissibility - Single equivalent force.

EQUILIBRIUM OF RIGID BODIES

Free body diagram - Types of supports and their reactions - requirements of stable equilibrium - Moments and Couples - Moment of a force about a point and about an axis - Vectorial representation of moments and couples - Scalar components of a moment - Varignon's theorem - Equilibrium of Rigid bodies in two dimension.

PROPERTIES OF SURFACES AND SOLIDS

Determination of Areas and Volumes - First moment of area - centroid of sections - Rectangle, circle, triangle from integration - T section, I section, Angle section, Hollow section by using standard formula - second and product moments of plane area - Rectangle, triangle, circle from integration - T section, I section, Angle section, Hollow section by using standard formula - Parallel axis theorem and perpendicular axis theorem - Polar moment of inertia - Principle moments of inertia of plane areas - Mass moment of inertia.

FRICTION AND ELEMENTS OF RIGID BODY DYNAMICS

Frictional force - Laws of Coloumb friction - simple contact friction - Rolling resistance - Belt friction. Translation and Rotation of Rigid Bodies - Velocity and acceleration - General Plane motion.

DYNAMICS OF PARTICLES

Displacement, Velocity and acceleration, their relationship - Relative motion - Curvilinear motion - Newton's law - Work Energy equation of particles - Impulse and Momentum - Impact of elastic bodies.

Text	Books
1	Beer & Johnson, Vector Mechanics for Engineers. Vol. I Statics and Vol. II Dynamics, McGraw Hill International Edition, 1995.
2	Kottiswaran N, Engineering Mechanics-Statics & Dynamics, Sri Balaji Publications, 2014.
3	Meriam, Engineering Mechanics, Vol. I Statics & Vol. II Dynamics 2/e, Wiley Intl., 1998.
Refe	rence Books
1	Rajasekaran.S, and Sankara Subramanian G, "Engineering Mechanics", Vikas Publishing Co. New Delhi.
2	Irving H. Shames and G.Krishna Mohana Rao, Engineering Mechanics - Statics & Dynamics, 4 th Edition, Prentice Hall of India Pvt. Ltd., 1997.
3	K.L.Kumar, Engineering Mechanics III Edition, Tata McGraw Hill Publishing Co. Ltd., 1998

Course	Course Designers													
S.No	Faculty Name	Designation	Department/Name of the College	Email id										
1	N.Rajan	Assoc. Prof.	MECH/VMKVEC	rajan@vmkvec.edu.in										
2	A Elanthiraiyan	AP-II	MECH/AVIT	aelanthirayan@avit.ac.in										

1703	VCC34	1	FLU	ID M	ECHA	ANIC	5 ANI)	Cate	gory	L	Т	Р		Credit	
1/0	CU3	•		MA	CHIN	IERY			С	С	3	0	0		3	
Prean The ai		he sul	bject is	s to pr	ovide	a func	lamen	tal kno	owledg	ge in fl	uid meo	chanics	and ma	chinery	·	
Prere	quisit	e : NI	L													
Cours	se Obj	ectiv	e													
1	To lea	rn the	e funda	amenta	als in I	Fluid I	Mecha	inics								
2	To un	To understand the kinematics of the fluid flow.														
3	To understand the fluid flow concepts															
4	To learn the working principle, applications & design of various hydraulic turbines.															
5 To learn the working principle, applications &, design of various hydraulic pumps.																
Course Outcomes: On the successful completion of the course, students will be able to																
	T									-						
CO1.	CO1.Determine the variation of pressure in fluid at rest and calculate the hydrostatic forces and point of application on a plane or curved surface.Apply															
CO2.	Distinguish between various types of flows and derive the continuity equation for compressible and incompressible flowApply															
CO3.	Understand the use and limitations of the Bernoulli's equation and apply it to solve a variety of fluid flow problems.															
CO4.		cribe ırbule		nditio	n unde	er whic	ch the	flow i	n a cii	cular p	pipe is la	aminar	Ap	ply		
CO5.			the ma ipes co							d calcu	ilate the	e flow	Ap	ply		
Марр	ing w	ith Pı	rograr	nme (Jutco	mes a	nd Pr	ogran	ıme S	pecific	Outco	mes				
СО	PO	РО	PO	РО	PO	PO	РО	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO3	
CO	1 s	2 M	3 M	4 1	5 M	6 1	7	8	9	0	1	2 I	1 T	2 M		
1 CO	S	М	M	L	М	L	-	-	-	-	-	L	L	М	L	
2	S	Μ	М	L	L	L	-	-	-	-	-	М	L	М	L	
CO 3	S	Μ	М	L	L	L	-	-	-	-	-	L	L	М	L	
CO 4	S	S	S	М	L	L	-	L	-	-	L	М	L	L	L	
CO 5	М	М	М	L	L	М	-	-	-	-	L	М	L	L	L	
S- Str	ong; I	M-Me	edium	; L-L()W	<u> </u>	<u> </u>	<u> </u>	<u> </u>	1	1	L		1	L	

BASIC CONCEPTS AND PROPERTIES

Fluid – Definition - solid and fluid - Units and dimensions - Properties of fluids – Temperature - Viscosity - Compressibility - Vapour pressure - Capillary and surface tension - Fluid statics: concept of fluid static pressure - Pressure measurements by manometers and pressure gauges. Introduction to CFD, geophysical fluid dynamics. Velocity and density measurement methods.

FLUID KINEMATICS AND SIMILARITIES

Fluid Kinematics - Flow visualization - Lines of flow - Types of flow - Velocity field and acceleration - Continuity equation (one and three dimensional differential forms)- Equation of streamline - Stream function - Velocity potential function - Circulation - Flow net – Fluid dynamics - Equations of motion - Euler's equation along a streamline - Bernoulli's equation – Applications - Venturi meter - Orifice meter - Pitot tube - Dimensional analysis - Buckingham's π theorem- Applications - Similarity laws and models.

INCOMPRESSIBLE FLUID FLOW

Viscous flow - Navier-Stoke's equation - Shear stress - Pressure gradient relationship - Laminar flow between parallel plates - Laminar flow through circular tubes (Hagen poiseulle's) - Hydraulic and energy gradient - Flow through pipes - Darcy - Weisbagh's equation - Pipe roughness -Friction factor- Moody's diagram - Minor losses - Flow through pipes in series and in parallel - Power transmission - Boundary layer flows - Boundary layer thickness - Boundary layer separation - Drag and lift coefficients. Major losses-design aspect in application of drags and lift coefficients. Piping Engineering-Introduction and Applications.

HYDRAULIC TURBINES

Fluid machines: definition and classification - Exchange of energy - Euler's equation for turbo machines -Construction of velocity vector diagrams - Head and specific work - Components of energy transfer -Degree of reaction. Hydro turbines: definition and classifications - Pelton turbine - Francis turbine propeller turbine - Kaplan turbine - Working principles - Velocity triangles - Work done - Specific speed - Efficiencies - Performance curve for turbines. Energy saving design requirements for turbine.

HYDRAULIC PUMPS

Pumps: definition and classifications - Centrifugal pump: classifications - Working principle- velocity triangles - Specific speed - Efficiency and performance curves - Reciprocating pump: classification - Working principle - Indicator diagram -Work saved by air vessels and performance curves - Cavitations in pumps - Rotary pumps- Applications.

Text Books

1	Bansal- R.K "Fluid Mechanics and Hydraulics Machines"- (5 th edition) - Laxmi publications (P) Ltd- New Delhi- 2005.
2	Modi.P.N. & Seth.S.M., a Textbook on Fluid Mechanics, Standard Publishers Ltd.

Reference Books

1	White- F.M "Fluid Mechanics"- Tata McGraw-Hill- 5 th Edition- New Delhi- 2003.
2	Ramamurtham. S- "Fluid Mechanics and Hydraulics & Fluid Machines"-Dhanpat

Rai & Sons, Delhi- 2003.

Course Designers

S.No	Faculty Name	Designation	Department/ Name of the College	Email id					
1	A.Fizoor Rahman	Assistant Professor	Civil / VMKVEC	fizoorrahman@vmkvec.edu.in					
2	Pa.Suriya	Assistant Professor	Civil / AVIT	suriya@avit.ac.in					

17CV	VCC33	3		STRE	NGT	H OF	MAT	ERIA	LS		Ca	tegory	L	Т	Р	C r e d i t
												CC	3	0	0	3
PREA The ai design	im of t	he cou		to unc	lerstar	nd the o	concep	pts of s	stress a	and str	ain an	d their	use in th	e analysis	and	
PREF	REQU	ISITI	E - EN	GINE	ERIN	IG MI	ECHA	NICS								
COU	RSE ()BJE	CTIVI	ES												
1	To u	nderst	and ba	sic me	chani	cal for	ces ac	ting of	n rigid	and d	eform	able bo	odies.			
2													pes of be	ams.		
3	To le	arn th	e torsi	onal et	ffects	on circ	cular b	ars, sł	nafts, h	elical	spring					
4	To learn the torsional effects on circular bars, shafts, helical spring.To learn the deflection equations of beams and columns for different end conditions.															
-	To learn the deflection equations of beams and columns for different end conditions. To learn the two dimensional stresses and deformation of cylinders and spherical shells.															
5					5101141	511035		ución		lorcy			spitericar	silens.		
COU					C .1			1 .	11 1	1.1						
$\frac{\text{On t}}{\text{CO1.}}$			ul com	-								nlv		Apply		
equilit	-									na anso	o to up	piy		rippiy		
CO2.							ment c	compu	tations	and c	onstru	ct she	ar	Apply		
force a							afts he	elical	snring					Apply		
CO4.								eneur	spring.	,				Apply		
CO5.				and sh	ear st	resses	for va	rious s	section	s and	plot th	e varia	ation	Apply		
across										D 0 0 0						
MAPI COS	PING PO	WIT. PO	H PRO	JGRA PO	MMI PO	E OUI		IES A PO	ND P PO	ROGI PO	RAMN PO	AE SP PO				2
COS	1 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO	3
CO1	М	М	Μ	-	-	-	-	S	-	-	L	-	L	-	M	
CO2	S	S	S	_		-	_	-	_	_	S	_	L	L	M	
	5	2	5	-	-	-	-	-	-	-	5	-			IVI	
CO3	S	S	S	Μ	-	-	-	-	-	-	S	-	L	М	L	
CO4	S	S	S	S	-	М	-	S	-	-	S	-	L	L	M	
	S	S	S	S	_	М	-	-	-	-	S	-	L	M	M	
CO5	5	~	~	~												

STRESS- STRAIN AND DEFORMATION OF SOLIDS: Properties of material, Concept of Stress and Strain, Hook's Law, Stress Strain Diagram for structural steel and Non-ferrous materials. Poisson's Ratio & principles of superposition, Total elongation of tapering bars of circular and rectangular cross-sections. Elongation due to self-weight, volumetric strain. Expression for Volumetric strain, Elastic constants, relationship among elastic constants, compound bars Rigid and Deformable bodies – Strength- Stiffness and

Stability – Stresses; Tensile- Compressive and Shear – Elastic constants – Strain energy and unit strain energy – Strain energy in uniaxial loads.

BEAMS - LOADS AND STRESSES : Types of beams: Supports and Loads – Shear force and Bending Moment in beams – Cantilever- Simply supported and Overhanging beams – Stresses in beams – Theory of simple bending – Stress variation along the length and in the beam section – Shear stresses in beams.

TORSION: Analysis of torsion of circular bars – Shear stress distribution – Bars of Solid and hollow circular section – Stepped shaft – Twist and torsion stiffness – Compound shafts – Fixed and simply supported shafts – Application to close-coiled helical springs – Maximum shear stress in spring section including Wahl Factor – Deflection of helical coil springs under axial loads – Design of helical coil springs.

DEFLECTION OF BEAMS : Elastic curve of Neutral axis of the beam under normal loads – Evaluation of beam deflection and slope: Double integration method- Macaulay Method- and Moment-area Method – Columns – End conditions – Equivalent length of a column – Euler equation – Slenderness ratio – Rankine formula for columns – Introduction to curved beams.

ANALYSIS OF STRESSES IN TWO DIMENSIONS: Biaxial state of stresses – Thin cylindrical and spherical shells – Deformation in thin cylindrical and spherical shells – Biaxial stresses at a point – Stresses on inclined plane – Principal planes and stresses – Mohr's circle for biaxial stresses – Maximum shear stress - Strain energy in bending and torsion.

TEXT BOOKS:

- 1. Ramamrutham.S- Strength of Materials- S.Chand&B Co. New Delhi-2007.
- 2. Beer F. P. and Johnston R- "Mechanics of Materials"- McGraw-Hill Book Co- Third Edition- 2008.
- 3. Srinath L.N., " Advanced Mechanics of Solids ", Tata McGraw Hill Publishing Company Ltd., New Delhi,2009
- 4. Dr.R.K.Bansal,"A Textbook of Strength of Materials"Laxmi Publications, 2010

REFERENCE BOOKS:

- 1. Nash W.A- "Theory and problems in Strength of Materials"- Schaum Outline Series-, McGraw-Hill Book Co- New York- 2005
- 2. Ryder G.H- "Strength of Materials"- Macmillan India Ltd.- Third Edition- 2007
- 3. Ray Hulse- Keith Sherwin & Jack Cain- "Solid Mechanics"- Palgrave ANE Books- 2006.
- 4. Singh D.K "Mechanics of Solids" Pearson Education 2009.

COUR	RSE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	A.FizoorRahman	Assistant Professor	CIVIL	fizoorr@gmail.com
2	M.Senthilkumar	Assistant Professor	CIVIL	Senthilkumar@vmkvec.edu.in
3	Sudip Das	Assistant Professor	CIVIL	sudipdas@avit.ac.in
4	A.Senthilkumar	Assistant Professor	MECHANICAL	senthilkumar@avit.ac.in

17M	ECC0						HAVIO S ANI		C	Categor	y L	Т	Р		Cred	it
1/101.	LCCU	5	Ľ		ETAL			,		CC	3	0	0		3	
	course misms	in cr	ystalli	ine so	lid ma	terial	s, mec				ferrous proces				0	U
Prere	quisit	e - NI	L													
Cours	-															
1	To discuss the classification, properties and application of various Engineering Materials.															
2	Describe the failure modes of materials and study of phase diagrams.															
3 Select the suitable mechanical treatment and strengthening mechanisms for ferrous and non ferrous materials.																
4 []]																
5 Discuss the process of powder metallurgy, introduction of composite materials and working of SEM																
Course Outcomes: On the successful completion of the course, students will be able to																
CO1.	Describe to select suitable ferrous, non ferrous and intermetallicUnderstand1.materials based on mechanical and metallurgical properties.Understand															
CO2.	-					-			<u> </u>		outline aterials		ous	Unc	lerstan	d
CO3.		•		0			suitat ystalli				t meth	ods a	nd	Арр	oly	
CO4.	corre	osion	on va	rious	mater	ials in	cludin	ig PVI	D & 0	CVD.	nd to	1		App	ply	
CO5.	com	posite		rials a		C		-			cture particular d the w			Арр	ply	
Mapp	ing w	ith P	rogra	mme	Outco	omes	and P	rogra	mm	e Speci	fic Ou	tcom	es			
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS	01	PSO2	PSO3
CO1	S	М	-	-	-	-	-	-	-	-	-	-	N	Ν	-	-
CO2	S	М	-	-	-	-	-	-	-	-	-	-	N	Μ	-	-
CO3	S	S	-	-	-	-	-	-	-	-	-	S	Ν	Ν	-	М
CO4	S	S	-	-	-	-	-	-	-		-	М	N	М	-	М
CO5	S	S	-	-	-	-	-	-	-		-	S	Ν	Ν	-	М
S- Stro	ng; M-	Mediu	ım; <u>L</u> -]	Low												

METALLIC & NON-METALLIC MATERIALS

Classification - Metallic materials - Ferrous materials -steel, classifications, effects of alloying elements added in steel, Cast iron - classifications; Non-Ferrous materials - aluminium, copper, titanium, and alloys. Non-Metallic materials - polymers, ceramics; properties and applications.

BEHAVIOR OF MATERIALS

Introduction to plastic deformation - Slip and twinning – Types of fracture –brittle fracture, ductile fracture - Creep and fatigue.

Grain Growth: Recovery & Re-crystallization. Phase diagrams - Iron – Iron carbide equilibrium diagram - Time Temperature Transformation (TTT) and Cooling Curve Transformation (CCT) curve.

MATERIAL TREATMENT

Heat treatment- Annealing, Normalizing - Hardening and Tempering, Case hardening, Hardenability - Jominy end quench test.

Mechanical Treatment- strengthening mechanisms - strain hardening, solid solution hardening, grain size reduction

CORROSION

Introduction- forms of corrosion-pitting, intergranular, stress corrosion, corrosion fatigue, dezincification, erosion-corrosion, Crevice Corrosion, Fretting-Protection methods - PVD, CVD.

ADVANCED MATERIALS & CHARACTERIZATION

Powder metallurgy – powder production, blending, compaction, sintering-applications. Composites -Types- Metal Matrix Composites (MMC), Polymer Matrix Composites (PMC), Ceramic Matrix Composites (CMC) - properties & applications. Sample preparation methods of MMC, PMC. SEM - working principle and applications

Text Books

- **1** William D Callister "Material Science and Engineering", John Wiley and Sons 2005.
- 2 Sydney H.Avner "Introduction to Physical Metallurgy" McGraw Hill Book Company.

Reference Books

1 George E. Dieter, "Mechanical Metallurgy"

Course Designers

S.No	Faculty Name	Designation	Department/ Name of the College	Email id
1	S. ARUNKUMAR	Asst. Prof	MECH / VMKVEC	arunkumar@vmkvec.edu.in
2	M.SARAVANAN	Asst. Prof	MECH / AVIT	saravanan@avit.ac.in

178.45		K	KINEN	INEMATICS C MACHINES	MATICS OF		Catego	ry	L		Т		P	C	redit
TIME	CC06		MA		ES		CC		3		0		0		3
Pream	ble														
The st machir		-		-	course	e are	expec	ted to	o und	erstan	d the	role o	of the	kinem	atics of
Prerec	luisite	: Eng	ineerir	ng Me	chanics	5									
Course	e Obje	ctive													
1 7	To demonstrate about various mechanisms.														
2 5	Solve problems involving velocity and acceleration of various mechanisms.														
3 (Construct various motions of follower and cam profile														
4	To study and apply various types of Gears.														
5 7	To study and apply various types of Friction drives.														
Course	e Outc														4
CO1.	DÔF,	inver	sions,	equiv	of kine alent c	hains	and pl	anar r	nechai	nisms.				derstan	a
CO2.			•		veloci	•					nechai	nisms.	_	ply	
CO3.					lowers									ply	
CO4.	requi	red ap	plicati	ions.	eomet							for the	Î	ply	
CO5.	Discu	iss the	e fricti	ion and	d its ef	fects	in mec	hanica	al com	ponen	ts		Ap	ply	
Mappi	ing wit	h Pro	gram	me Oı	itcome	es and	l Prog	ramn	ne Spe	cific (Outcor	nes			
СО	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PSO 2	PSO3
CO1	S	М	L	-	L	L	-						-	-	-
CO2	М	S	М	М	-	L							L	-	L
CO3	S	М	L	-	L	L							М	-	М
CO4	М	L	S	L	-	L							М	-	М
CO5	S	Μ	L	-	-	L							L	-	L
S-Stro	ong; M	-Med	ium;	L-Lov	V										

Syllabus

BASICS OF MECHANISM

Rigid body, Mechanism and Machine, Kinematic Link, Kinematic Pair -Degree of Freedom - Mobility-Kutzbach criterion- Gruebler's Criterion for degrees of freedom - Grashoff's law-Kinematic Inversions of 4-bar chain and slider crank chains-Mechanical Advantage-Transmission angle-Description of common Mechanisms-Single - Double and offset slider mechanisms - Quick return mechanisms - Ratchets and escapements - Indexing Mechanisms - Rocking Mechanisms - Straight line generators.

KINEMATICS OF LINKS

Velocity analysis: Instantaneous centre method, Kennedy's theorem, Locating instantaneous centres, Relative velocity method for slider-crank mechanism, and crank and slotted lever mechanism. Acceleration analysis: Klein's construction, slider crank mechanism, Coriolis acceleration component, Crank and slotted lever mechanism.

KINEMATICS OF CAM

Classifications - Displacement diagrams-parabolic- Simple harmonic and Cycloidal motions - Layout of plate cam profiles - Derivatives of Follower motion - High speed cams - circular arc and tangent cams - Standard cam motion.

GEARS

Gears and Gear trains: Classification, Terminology, Law of Gearing, Interferences, methods of avoiding interferences, path of contact, arc of contact. Simple gear train, compound gear train, reverted gear train, planetary/epicyclic gear train, Sun and planet gear.

FRICTION

Surface contacts-Sliding and Rolling friction - Friction drives – Friction in screw threads - Friction clutches - Belt and rope drives- Friction aspects in Brakes.

Text	Books								
1	Rattan S.S, "Theory of Machines", Tata McGraw-Hill Publishing Company Ltd. New Delhi.								
2	Khurmi.R.S Gupta, "Theory of Machines". S.Chand & Co., 2001								
3	Dr. Sadhu Singh, "Theory of Machines", Pearson Education								
Refer	ence Books								
1	Thomas Bevan, "Theory of Machines", CBS Publishers and Distributors, 2005								
2	Ghosh A and A.K.Mallick, "Theory of Mechanisms and Machines", Affiliated East-West Pvt.Ltd., New Delhi.								
3	Shigley J.E and Vickes J.J, "Theory of Machines & Mechanism", McGraw Hill, 2000								
4	P L Ballaney, "Theory of Machines", Khanna Publisher								
5	Kenneth J Waldron, "Kinematics, Dynamics and Design of Machinery", Gary L Kinzel Wiley Edition.								

Cours	Course Designers												
S.No	Faculty Name	Designation	Department / College	Email id									
1	Dr. S.VENKATESAN	Professor	Mech / VMKVEC	svenkatesan@vmkvec.edu.in									
2	Prof. J. RABI	Associate Professor	Mech / VMKVEC	jrabi@vmkvec.edu.in									
3	S. ASHOK KUAMR	Assistant Professor	Mech / AVIT	ashokkumar@avit.ac.in									

17MECC07 THERMAL Category L T P											Cr	edit			
1/101	IECU	07]	ENGI	NEER	ING		C	С	2		1	0	í	3
pra ma refi Ga Ain	ermal l actical jor pa rigerati	of th rt in on an Vapou ioning e	the the d air-o r Pow g.	l bas desig condit ver Cy	ed eq in and ioning cle, I	uipmen d analy g syster	nt a ysis ns,	nd ag of a and p	pplica autom ower	ations. otive plants,	Ther engine etc. 7	mal es, ro This c	vith theo Engineer ockets, ourse de e, Refrig	ring pla jet eng als wit	ays a gines, h the
	se Obj			/											
1		Fo apply thermodynamic principles in vapour power cycles, steam nozzles and steam urbines of steam power.													
2	To app and an	To apply the knowledge of various thermodynamic processes to air and gas power cycles and analysis of air and gas power cycles.													
3	Engine	To apply the knowledge of various thermodynamic processes in Combustion process in IC Engine and compressor.													
4	of refr	To apply and analyze the performance characteristics of refrigeration systems and properties of refrigerants.													
5	To app proces					c proper	rties	and t	heir e	ffects i	n vario	ous ps	ychome	tric	
Cour	rse Out	come	s: On	the s	uccess	sful con	nple	etion (of the	cours	e, stud	ents	will be a	ble to	
CO1.	cycl nozz	es, Co	ombus team t	tion p urbine	rocess	nodyna s, therm team po	ody	namic	c prin	ciples i	n steai	n	Underst	anding	
CO2.	App	ly the	know	ledge		rious the							Apply		
CO3.	Iden	tify th	ne app	licatio	on of t	hermod mobiles	lyna	mic p	rincip	oles of		.1	Apply		
CO4.	Δnn	ly and				ormance					rigerat	ion	Analyze	e	
CO5.	Ána	lyze tl			-	properti l Air-co					various	5	Analyze	e	
Map						mes an					ïc Out	tcome	es		
CO	PO1	PO2	PO3	PO4	PO5	PO6 P	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L	М	М		L							S	М	L
CO2	М	М	L	М		L							S	М	L
CO3	S	М	L	М		L							S	М	L
CO4	S	S	М	S		L				М			S	М	L

CO5 S S S L M S M	L
---	---

S- Strong; M-Medium; L-Low

SYLLABUS

VAPOUR POWER CYCLES, STEAM NOZZLES AND STEAM TURBINES

Rankine cycles, effect of operating conditions on Rankine cycle efficiency, Modified Rankine cycle, regenerative cycle, reheat cycle, Binary Vapour cycle. Problems on Rankine cycle with reheat and regeneration conditions.

Steam nozzles, property calculation of steam flow through nozzles, metastable expansion of steam in a nozzle, steam injector. Problems for velocity and discharge calculation of steam.

Steam turbines, classifications, impulse and reaction turbine, compounding of steam turbines, bleeding, governing & control.

AIR AND GAS POWER CYCLES

Air standard cycles, Carnot cycle, Otto cycle, Diesel cycle, Dual cycle, problems on determination of efficiency, mean effective pressure and work. Comparison of air standard cycles. Atkinson cycle, Ericsson cycle, Stirling cycle.

Brayton cycle, gas turbines, classification, open cycle and closed cycle, Gas turbine fuels, Calculation of work output and efficiency on Brayton cycle, Application of gas turbine, problems on Brayton cycle.

INTERNAL COMBUSTION ENGINES AND AIR COMPRESSORS

Internal Combustion engines, evolution and classification, components of internal combustion engines, two stroke and four stroke engine, S.I and C.I engines, Valve timing and port timing, fuel supply systems- carburettor and fuel injection, ignition systems, cooling systems – air cooling and liquid cooing systems, lubrication systems, performance of I.C engines. Problems on performance calculation.

Air compressors- classification, reciprocating air compressor, staging, calculation of work and efficiency, clearance in compressors, intercooler, and applications. Rotary compressor, classification, centrifugal compressor, axial flow compressor, compressor characteristics – surging, choking and stalling. Problems on air compressor – single stage and multi stage.

REFRIGERATION

Refrigeration – refrigeration systems, methods of refrigeration, Air refrigeration system, Reversed carnot cycle, reversed brayton cycle, vapour compression refrigeration cyclecomponents and functions, factors affecting the performance, vapour absorption systemscomponents and functions, COP calculations, refrigerant- classifications, properties of an ideal refrigerant, common refrigerants and its applications.

PSYCHROMETRICS AND AIRCONDITIONING

Psychrometry - terms and psychometric relations, psychrometers, psychrometric charts, processes, mixing of air stream, sensible heating, sensible cooling, cooling and dehumidification, cooling and humidification, heating and humidification. Problems using psychrometic charts.

Air-conditioning systems, components and its functions, air-conditioning cycle, classification of central air conditioning, zoned systems, unitary systems, unitary – central systems, selection criteria of systems, applications, window type package units and console type package units, filters – types and functions, fans, controls – methods. Air Distribution systems – methods and functions, cooling load estimation methods, Heat load estimation.

1	Kothandaraman.C.P, Domkundwar.S, AnandDomkundwar, "A Course in Thermal Engineering", DhanpatRai& Co. (P) Ltd., 2010.												
2	Rajput.R.K, "Thermal Engineering", Laxmi Publications, 10th Edition, New Delhi, 2015.												
Refer	ence Books	nce Books											
1	Manohar Prasad., (2007), Refrigeration and Air Conditioning, New Age International.												
2	Mathur.M.L & Sharma R.P, (2009), Internal Combustion Engine, Dhanpat Rai Publications.												
Cours	e Designers												
S.No	Faculty Name	Department/Na											
1	P.SELLAMUTHU ASSOCIATE PROFESSOR MECH/VMKVEC Selsrikanth29@gmail.com												
2	R. MAHESH	ASST. PROF II	MECH / AVIT	mahesh@avit.ac.in									

17\/1	ECC0	Q	D	YNAN	AICS	OF		Cat	egory	L	,	Т	Р	Cre	edit
1/1/1	ECCU	0		MAC	HINE	S		(CC	2		1	0		3
nembe govern	ident v ers, ap ors an	plicatio d gyro	on of b scope		ng ma s in re	sses, t al tim	the di	fferen	t types			es actin			
Cours	e Obje	ective													
1 T	o dem	onstrat	e the co	oncepts	of for	ces act	ing or	n mach	ines ar	nd its m	embers				
2 T	o learr	n about	the app	olicatio	n of ba	lancin	g of n	nasses							
3 7	Fo dete	ermine	the co	oncepts	of fre	e vib	ration	s.							
-	Го Un	lerstar	d the d	concep	ts of f	orced	vibra	tions.							
5 7	Го арр	ly the	knowl	edge o	f Gov	ernor	s and	l Gyr	oscopi	c force	es in rea	al time a	applicat	ions.	
Cours	e Outo	comes	: On tl	ne suco	cessful	l com	pletic	on of t	the co	urse, s	tudent	s will b	e able (to	
CO1.							-			-	membe			rstand	
CO2.	Ident	ify the	applic	ation o	of bala	ncing	of m	asses					Unde	rstand	
CO3.	Deter	mine t	he con	cepts o	of free	vibra	ition						Apply	y	
CO4.	Com	pute a	nd gaii	n the a	pplicat	tion o	f forc	ed vib	ration				Apply	y	
CO5.		late the applica		ledge	of Go	overno	ors ai	nd Gy	rosco	pic for	ces wit	h real	Apply	y	
Mappi	ing wi	th Pro	gramı	ne Ou	tcome	es and	l Prog	gram	ne Sp	ecific	Outcor	nes			
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	L	L	-	-	-	-	-	-	-	-	М	-	-
CO2	S	S	L	L	-	-	-	-	-	-	-	-	М	-	-
CO3	S	S	М	L	-	-	-	-	-	-	-	-	L	-	-
CO4	S	S	М	L	-	-	-	-	-	-	-	-	L	-	-
CO5	S	S	S	S	-	-	-	-	-	-	-	-	S	-	-

FORCE ANALYSIS

Dynamic force analysis - Inertia force and Inertia torque - D'Alemberts principle - The principle of superposition - Dynamic Analysis in Reciprocating Engines – Gas Forces - Equivalent masses - Bearing loads - Crank shaft Torque - Turning moment diagrams - Fly wheels -Engine shaking Forces

BALANCING

Static and dynamic balancing - Balancing of rotating masses - Balancing a single cylinder Engine - Balancing Multi-cylinder Engines - Partial balancing in locomotive Engines - Balancing linkages - balancing machines.

FREE VIBRATIONS

Basic features of vibratory systems - idealized models - Basic elements and lumping of parameters - Degrees of freedom - Single degree of freedom - Free vibration - Equations of motion - natural frequency - Types of Damping - Damped vibration- critical speeds of simple shaft - Torsional vibration - Natural frequency of two and three rotor systems

FORCED VIBRATIONS

Response to periodic forcing – Harmonic Forcing - Forcing caused by unbalance - Support motion - Force transmissibility and amplitude transmissibility. - Vibration isolation.

MECHANISMS FOR CONTROL

Governors; Force analysis of Porter, Proel and spring controlled governors. Controlling force, stability, sensitiveness, effort and power of governors. Characteristics - Effect of friction. **Gyroscopic Forces**: Gyroscopic couple, Effect of Gyroscopic couple on vehicle; Applications of Gyroscopic forces. - Ships and airplanes

1	Rattan S.S, "Theory of Machines", Tata McGraw-Hill Publishing Company Ltd. New Delhi.											
2	Khurmi R.S Gupta, "Theory of Machines". S.Chand & Co.,											
Refe	rence Books											
1	Thomas Bevan, "Theory of Machines", CBS Publishers and Distributors,											
2	Ghosh A and A.K.Mallick, "Theory of Mechanisms and Machines", Affiliated East-West Pvt. Ltd., New Delhi.											
3	Shigley J.E and Vie	ckes J.J, "Theo	ry of Machines & Mecl	hanism", McGraw Hill,								
Cour	se Designers											
S.No	Department/											
1	S. Sangeetha Associate Mech / AVIT sangeethas@avit.ac.in											
2	Dr. S.Venkatesan	Professor	Mech / VMKVEC	svenkatesan@vmkvec.edu.in								

17MECC09	DESIGN OF MACHINE	Category	L	Т	Р	Credit
	ELEMENTS	CC	2	1	0	3
D 11						

Preamble

Design is essentially a decision-making process. Design is to formulate a plan to satisfy a particular need and to create something with a physical reality. Every Mechanical Engineer should learn the pre-defined set of processes involved in conversion of raw material into a product. The Core course on Design of Machine Elements exposes the basic concepts and techniques involved in machine design. The Course includes the study about various types of stresses, theories of failure and design of shafts, couplings, fasteners, weld joints, springs ,bearings and flywheel. At the outset, the design and techniques involved during designing stages will be focused.

Prerequisite: Strength of Materials

Course Objective

1	To explain the various steps involved in the Design Process.
2	To categorize the various types of stresses and applications
3	To assess the principles involved in evaluating the shape and dimensions of a Component to satisfy functional and strength requirements.
1	To practice the use of standard procedures and data.
5	To design the various mechanical components for the given loading conditions.

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	Assess set of v		fferen	it type	es of s	tresse	es and	Theo	ries o	f failu	ire foi	give:	n Ur	Understand			
CO2.	Design shafts and couplings for a given values by using pre-defined data and procedures.												Ap	Apply			
CO3.	Design the welded joints and fasteners for given set of conditions at type of joints using Pre-defined values.												d Ap	ply			
CO4.	Design springs for given loading conditions as per the requirements.											Ap	Apply				
CO5.	Design bearings and Flywheels for a given statement as per the requirements.										Ap	Apply					
Mapping with Programme Outcomes and Programme Specific Outcomes																	
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 1	PO 1	PO 1	PSO 1	PSO 2	PSO 3		
CO1	М																

CO2	S	S	S	М	-	-	-	-	-	-	-	-	S	-	-
CO3	S	S	S	М	-	-	-	-	-	-	-	-	S	-	-
CO4	S	S	S	М	-	-	-	-	-	-	-	-	S	-	-
CO5	S	S	S	М	-	-	-	-	-	-	-	-	S	-	-
S- Strong;	; M-Med	lium; I	L-Low							•					

Syllabus

STEADY STRESSES AND VARIABLE STRESSES IN MACHINE MEMBERS

Introduction to the design process - factor influencing machine design- Direct- Bending and torsional stress equations -Calculation of principal stresses for various load combinations-Factor of safety - theories of failure – stress concentration – design for variable loading – Soderberg- Goodman and Gerber relations

DESIGN OF SHAFTS AND COUPLINGS

Design of solid and hollow shafts based on strength- rigidity and critical speed – Design of rigid and flexible couplings.

DESIGN OF FASTENERS AND WELDED JOINTS

Threaded fasteners - Design of bolted joints including eccentric loading – Design of welded Joints for pressure vessels and structures - Theory of bolted joints.

DESIGN OF SPRINGS

Design of helical- leaf- disc and torsional springs under constant loads and varying loads – Concentric torsion springs

DESIGN OF BEARINGS AND FLYWHEELS

Design of bearings – sliding contact and rolling contact types– Design of journal bearings calculation of bearing dimensions – Design of flywheels involving stresses in rim and arm.

1	Design of Machine Elements-V.B.Bhandari
2	Mechaniacl Engineering Design: Joseph E Shigley and Charles R. Mischke
Refere	nce Books
1	Machine Design :Robert L.Norton, Pearson Education

2	Design Data Book, compiled by PSG College of Technology											
3	Fundamentals of Machine component Design–Robert C.Juvinall, Wiley India Pvt.Ltd,											
4	Engineering Design, G.E. Dieter.											
Course	e Designers											
S.No	Faculty Name	Designation	Department / College	Email id								
1	J. SENTHIL	Associate Professor	Mech / AVIT	jsenthil@avit.ac.in								
2	J SATHEES BABU	Associate Professor	Mech / VMKVEC	satheesbabu@vmkvec.edu.in								

17MI		n			INEE OLO(Categ	ory	L	Т	Р	C	redit
1/1011		0			URE				CC		3	0	0		3
Preamble The aim of the subject is to provide basic knowledge in instrumentation and measurements Prerequisite - NIL															
Cours	a Ohi	octiv	<u> </u>												
	•			damer	ntals o	of basi	ic eng	ineeri	ng me	asuren	nent sys	stem.			
2		dersta	and th	ne var	ious i	nstrur	-		-		gular m		ment, f	form	
2		ply th	e kno	wledg	ge of c	liffere					ts like l	inear, a	angula	•	
4	To un pressu	dersta re and	and th 1 flow	e prin meas	ciple, surem	conc ents	epts, a	applic	ations	and ad			-	erature,	
⁵ i	nstrur	ressure and flow measurements To use information to classifications, working and processes of optical measuring instruments, also to acquire the data and store in computer													
Cours											e, stud		ill be a		
CO1.	-	ain th surem		sitivit	y of tł	ne ins	trume	nts by	v evalu	lating t	he erro	r in		Under	stand
CO2.				-	-	-		-			ruments face fin		or	Under	stand
CO3.						-			asurin ce fini	-	r, angu	lar		App	oly
CO4.		rmine surem		pprop	oriate	instru	ments	for to	emper	ature, p	oressure	e and fl	ow	App	oly
CO5.	-			licatio ument		ented	know	ledge	in the	use of	optical			Under	stand
Mapp	ing w	ith Pı	rogra	mme	Outc	omes	and I	Progr	amme	e Speci	fic Out	comes	1	1	
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	L									L		
CO2	S	S	М	L									L		
CO3	М	L	М	L									L		
CO4	S	S	М	L									L		
CO5	S	М	S	L									L		
S- Stro	ng; M-	Mediu	ım; L-	Low											
SYLL	ABUS	5													
BASI	C PRI	NCIP	LES &	& LIN	EAR	/ AN	GULA	AR M	EASU	IREME	ENT				

Basic principles of measurement - generalized configuration and functional descriptions of measuring instruments - Sensitivity- Readability - Range of accuracy - Precision - Static and dynamic performance characteristics –sources of error, classification and elimination of error. Repeatability - Systematic and random errors – Correction - Calibration - Interchangeability. Linear and angular Measurements: Vernier – micrometer - interval measurement - Slip gauges and classification - optical flats - limit gauges - Comparators: mechanical - pneumatic and electrical types – applications. -Sine bar - optical bevel protractor - Autocollimator- Angle Decker – Taper measurements.

DISPLACEMENT, SPEED & ACCELERATION / VIBRATION MEASUREMENT

Measurement of displacement: Theory and construction of various transducers to measure displacement – piezo electric, inductive, capacitance, resistance, ionization and photo electric transducers, calibration Procedures. Measurement of speed: Mechanical tachometers, electrical tachometers, stroboObjective, noncontact type of tachometer. Measurement of acceleration and vibration: Piezoelectric Accelerometer, Seismic Accelerometer , principles of seismic instruments – vibrometer.

TEMPERATURE, PRESSURE AND FLOW MEASUREMENT

Measurement of temperature: Classification, ranges, various principles of measurement, expansion, electrical resitance, thermistor, thermocouple, pyrometers, temperature

Indicators. Measurement of pressure: Units, classification, different principles used, manometers, piston, bourdon, pressure gauges, bellows- diaphragm gauges. Low pressure measurement, thermal conductivity gauges – ionization pressure gauges, Mcleod pressure gauge, Knudsen gauge. Calibration of pressure gauges. Measurement of level: Direct method – indirect methods- capacitative, ultrasonic, magnetic, cryogenic fuel level indicators – bubler level indicators.

Measurement of flow: Rotameter, magnetic, ultrasonic, turbine flow meter, hot – wire anemometer, Laser Doppler anemometer (LDA).

FORCE, TORQUE, & STRAIN MEASUREMENTS

Measurement of force : Load cells, cantilever beams, proving rings, differential transformers. Measurement of torque: Torsion bar dynamometer, servo controlled dynamometer, absorption dynamometers. Power Measurements. Strain Measurements: Various types of stress and strain measurements – electrical strain gauge – gauge factor – method of usage of resistance strain gauge for bending compressive and tensile strains – usage for measuring torque, Strain gauge, Rosettes. Strain gauge calibration.

FORM MEASUREMENTS AND OPTICAL MEASUREMENTS

Form measurements: Measurement of screw threads - thread gauges - Floating carriage micrometer-measurement of gears-tooth thickness-constant chord and base tangent method-Gleason gear testing machine – radius measurements-surface finish - Straightness - Flatness and roundness measurements. Optical measurements: Optical Micro Objective, interference micro Objective, tool makers micro Objective, profile projector, vision Systems, laser interferometer – linear and angular measurements.

Text I	Books
1	Kumar D.S., Mechanical Measurements and Control, Tata McGraw Hill.

2	Jain R.K., Engineering Metrology, Khanna Publishers, 1994.								
3	GuptaS.C "Engineering Metrology"- Dhanpatrai Publications- 1984								
Refer	eference Books								
1	Alan S. Morris- "The Essence of Measurement"- Prentice Hall of India- 1997								
2	Jayal A.K- "Instrumentation and Mechanical Measurements"- Galgotia Publications 2000								
3	Beckwith T.G- and N. Lewis Buck- "Mechanical Measurements"- Addison Wesley- 199								
4	Donald D Eckman- "Industrial Instrumentation"- Wiley Eastern-1985.								
Cours	se Designers								
S.No	Io Faculty Name Designatio n Department/ Name of the College Email id		Email id						
1	S.Duraithilagar	Asso.Prof	Mech/VMKVEC	duraithilagar@vmkvec.edu.in					
2	K.Surendra babu Assoc.Prof Mech / AVIT <u>surendrababu@avit.ac.in</u>								

17MECC11	GAS DYNAMICS AND	Category	L	Т	Р	Credit
	JET PROPULSION	CC	2	1	0	3

Preamble

This subject is providing knowledge of insight into the applications of compressible flows and the fundamentals of jet propulsion system. Formulate and solve problems in one -dimensional steady compressible flow including isentropic nozzle flow, constant area flow with friction (Fanno flow) and constant area flow with heat transfer (Rayliegh flow). To enhance the knowledge of determining the change in flow conditions through Prandtl-Meyer expansion wave and characteristic methods to solve problems in two-dimensional compressible flows

Prerequisite – ENGINEERING THERMODYNAMICS

Course Objective

1	To understand the compressible flow fundamentals
2	To analyze the flow through variable area ducts.
3	To study the compressible flow with friction and heat transfer.
4	To know the application of normal shock in compressible flow
5	To study the aircraft propulsion systems and rocket propulsion and its applications

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	Understand the basic of flow parameters and its types. Understand the knowledge about the rocket propulsion and various propellants.	Understand
CO2.	apply the concept of gas dynamics in Space Propulsion.	Apply
CO3.	Know to solve flow through variable area ducts.	analyze
CO4.	Examine the effect of compression and expansion waves in compressible flow.	analyze
CO5.	Solve problems in Rayleigh and Fanno flow.	analyze

Mapping with Programme Outcomes and Programme Specific Outcomes

СО	PO1	PO	PO1	PO1	PO1	PSO	PSO	PSO							
CO	FOI	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	М	L	М	М	М	L							S	М	L
CO2	М	М	L	М	L	L							S	Μ	L
CO3	S	М	L	М	М	L							S	М	L
CO4	S	S	М	S	М	L							S	М	L
CO5	S	S	S	S	М	L							S	М	L

S- Strong; M-Medium; L-Low

COMPRESSIBLE FLOW – FUNDAMENTALS

Energy and momentum equations for compressible fluid flows, various regions of flows, reference velocities, stagnation state, velocity of sound, critical states, Mach number, critical Mach number, types of waves, Mach cone, Mach angle, effect of Mach number on compressibility.

FLOW THROUGH VARIABLE AREA DUCTS

Isentropic flow through variable area ducts, T-s and h-s diagrams for nozzle and diffuser flows, area ratio as a function of Mach number, mass flow rate through nozzles and diffusers, effect of friction in flow through nozzles.

FLOW THROUGH CONSTANT AREA DUCTS

Flow in constant area ducts with friction (Fanno flow) -Fanno curves and Fanno flow equation, variation of flow properties, variation of Mach number with duct length.

Flow in constant area ducts with heat transfer (Rayleigh flow), Rayleigh line and Rayleigh flow equation, variation of flow properties, maximum heat transfer.

NORMAL AND OBLIQUE SHOCK

Governing equations, variation of flow parameters like static pressure, static temperature, density, stagnation pressure and entropy across the normal shock, Prandtl –Meyer equation, impossibility of shock in subsonic flows, flow in convergent and divergent nozzle with shock. Flow with Oblique Shock –

Fundamental relations, Prandtl"s equation, Variation of flow parameters

PROPULSION

Aircraft propulsion –types of jet engines –study of turbojet engine components –diffuser, compressor, combustion chamber, turbine and exhaust systems, performance of turbo jet engines–thrust, thrust power, propulsive and overall efficiencies, thrust augmentation in turbo jet engine, ram jet and pulse jet engines. Rocket propulsion –rocket engines thrust equation –effective jet velocity specific impulse–rocket engine performance, solid and liquid propellants.

ICAU	DUUAS									
1	Yahya. S.M., Fundamental of compressible flow with Aircraft and Rocket propulson", New Age International (p) Ltd., New Delhi, 2005.									
2	Ganesan. V., "Gas Turbines", Tata McGraw-Hill, New Delhi, 1999.									
Refere	Reference Books									
1	Rathakrishnan. E., "Gas Dynamics", Prentice Hall of India, New Delhi, 2001.									
2	Patrich.H. Oosthvizen, William E.Carscallen, "Compressible fluid flow", McGraw-Hill, 1997.									
Course	e Designers									
S.No	Faculty Name	Designation	Department/Name of the College	Email id						
1	P.SELLAMUTHU	Associate Professor	MECH / VMKVEC	selsrikanth29@gmail.com						
2	R. MAHESH Assistant Professor MECH / AVIT mahesh@avit.ac.in									

			CON INTE	APUT CPA			Cate	gory	L		Т	Р		Credi	it		
17MF	ECC12	M			URIN	G	C	С	3	3 0		0		3			
		-	-				-	l to ur	ndersta	and th	e natu	re and	role	of comp	iters in		
Prerec	quisite:	Nil															
Cours	e Obje	ctive															
1	To understand the concepts involved in CAD, CAM and CIM																
2	To apply geometric modelling techniques and various graphics standards in CAD																
3	To app	oly Mo	delling	g Tech	nniques	s & g	raphic	e stand	lard w	hile d	esignii	ng.					
4	To ma	ke use	of GT	and (CAPP o	conce	epts in	proce	essing	comp	onents						
5	To identify the components of FMS and SFC																
Cours	e Outc	omes:	On th	e suc	cessful	com	pletic	on of t	he co	urse,	studen	ts will	be a	ble to			
CO1	Image: Insection of the successful completion of the course, students will be able to Discuss the basic concepts of Computer Aided Design and Manufacturing Understand																
CO2	Appl	y the c	concep	t of N	Iodelin	ig tec	chniqu	es for	desig	ning t	he con	nponen	its	Apply			
CO3			CNC]		ams fo	or v	arious	mec	hanic	al co	ompone	ents v	vith	Apply			
CO4	Appl	y the	conce	pts of	f Grouj Manufa	-		gy an	d Co	mpute	er aide	d proc	ess	Apply			
CO5					of vario g Systei		ompoi	nents o	of Sho	p Flo	or Con	trol an	d	Apply			
Mapp	ing wit	h Prog	gramn	ne Ou	itcome	s and	d Prog	gramr	ne Sp	ecific	Outco	omes					
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12	PSO1	PSO2	PSO3		
CO1	М	М	-	-	L	-	-	-	-	_	-	-	М	-	-		
CO2	S	S	S	S	S	-	-	-	М	М	М	-	S	-	L		
CO3	S	S	L	S	S	-	-	-	М	М	-	-	S	-	L		
CO4	М	L	М	М	S	-	-	-	М	-	М	-	М	M -			
CO5	М	L	S	L	-	-	-	-	-	-	_	-	М	[- L			
S- Stro	ng; M-M	ledium	; L-Lov	V	<u>ı </u>		1	1	1	I	I	1	1	1			

Syllabus

INTRODUCTION TO CAD/CAM

The design process - Morphology of design, Product cycle - Computer Aided Design, Benefits of CAD. Role of computers - principles of computer graphics - Current trends in manufacturing engineering - Design for Manufacturing and Assembly - Sequential and concurrent engineering - Rapid prototyping.

SOLID MODELING

Graphic software: coordinate representation- graphic functions, software standards. Graphical Kernel system (GKS) - Initial graphics exchange system (IGES) - Graphic packages. Geometric Modeling - Wire frame, Surface and Solid models - Constructive Solid Geometry (CSG) and Boundary Representation (B-REP) Techniques - Features of Solid Modeling Packages.

FUNDAMENTALS OF CNC MACHINES

CNC Technology - Functions of CNC Control in Machine Tools - Classification of CNC systems -Contouring System - Interpolators, open loop and closed loop CNC systems - CNC Controllers, Direct Numerical Control (DNC Systems). - Work holding devices and tool holding devices-Automatic Tool changers. Feedback devices - Principles of Operation-Machining Centers - Tooling for CNC machines

Numerical control codes - Standards - Manual Programming - Canned cycles and subroutines - Computer Assisted Programming, CAD / CAM approach to NC part programming - APT language, machining from 3D models.

GROUP TECHNOLOGY AND COMPUTER AIDED PROCESS PLANNING

Introduction to CIM and its related activities-History of group technology- role of G.T. in CAD/CAM integration - part families - classification and coding - DCLASS and MICLASS and OPITZ coding systems-facility design using G.T. - benefits of G.T. - cellular manufacturing. Process planning - role of process planning in CAD/CAM integration - approaches to computer aided process planning - variant approach and generative approaches - CAPP and CMPP process planning systems.

SHOP FLOOR CONTROL AND INTRODUCTION OF FMS

Shop floor control-phases-factory data collection system -automatic identification methods- Bar code technology-automated data collection system. FMS-components of FMS - types -FMS workstation -material handling and storage systems- FMS layout -computer control systems- application and benefits.

Text	Text Books								
1	Mikell.P.Groover "Automation, Production Systems and Computer Integrated manufacturing", Pearson Education 2016.								
2	Radhakrishnan P, Subramanyan.S. and Raju V., "CAD/CAM/CIM", New Age International (P) Ltd., New Delhi.								
Refer	rence Books								
1	Yorem koren, "Computer Integrated Manufacturing System", McGraw-Hill.								
2	Ranky, Paul G., "Computer Integrated Manufacturing", Prentice Hall International.								

3	David D.Bedworth, Mark R.Hendersan, Phillip M.Wolfe "Computer Integrated Design and Manufacturing", McGraw-Hill Inc.									
4	Roger Hanman "Computer Integrated Manufacturing", Addison – Wesley.									
5	Viswanathan.N, Narahari.Y "Performance Modeling & Automated Manufacturing systems" Prentice hall of india pvt. Ltd.									
Cours	urse Designers									
S.No	Faculty Name	Designation	Department / College	Email id						
1	J.Sathees babu	Associate Professor	Mech / VMKVEC	satheesbabu@vmkvec.edu.in						
2	L.Prabhu	Assoc.Prof	Mech / AVIT	prabhu@avit.ac.in						

17MECC13		Category	L	Т	Р	Credit	
	SYSTEMS	СС	2	1	0	3	l

Preamble

Design of Transmission System course is concerned with design of mechanical transmission elements for engineering applications. In an industrial facility, motors and turbines use energy to produce rotational mechanical motion. In order to harness this motion to perform useful work, there must be a way to transmit it to other components and machines. Three common methods of accomplishing this include gear drives, chain drives, and belt drives. The Mechanical Transmission Systems subject area covers these types of transmission systems, including specific applications, how each works, and basic maintenance procedures.

Prerequisite - DESIGN OF MACHINE ELEMENTS

Cou	rse Ob	iectiv	e												
1				cedure	for po	ower ti	ransmi	ission	by bel	t, ropes	and cha	ain drive	es		
2	To des	sign the	e spur	and he	elical g	gears.									
3	To des	To design the bevel and worm gears.													
4	To explore the importance of gear box and design concepts.														
5	To assess the design procedure for clutches and brakes.														
	Course Outcomes: On the successful completion of the course, students will be able to														
CO1	· cond	Design a suitable flat belt, V-belt and chain drive for specified loading condition by using pre-defined set of values and procedures.									Ap	ply			
CO2	Determine the number of teeth, bending strength and wear strength for given spur gear and bevel gear by using pre-defined set of values and										gth for and	Ap	Apply		
CO3											Ap	Apply			
CO4	. Des		e gearl		0					given s	peed co	ondition	s Ap	ply	
CO5	spec		oading								rakes fo alues a	or given nd	Ap	ply	
Map	ping w	ith Pı	ograi	nme	Outco	omes	and F	Progra	amme	e Speci	fic Out	tcomes			
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1.	S	М	S	S	М	_	_	_	_	_	_	_	S	_	_
CO2.	S	м	s	S	М	_	_	_	-	_	_	-	S	_	_
CO3	M	S	S	S	М	_	_	_	_	_	_	_	S	_	-
CO4	S	М	S	S	М	_	_	_	_	-	_	-	S	_	_
CO5	S	М	S	S	М	_	_	_	_	_	_	_	S	_	_

S- Strong; M-Medium; L-Low

SYLLABUS

DESIGN OF FLEXIBLE DRIVES

Flat belts - V belts -Wire ropes and Chain Drives.

DESIGN OF SPUR GEARS AND HELICAL GEARS

Spur Gears-Helical gears- Simple gear design procedure with problems

DESIGN OF BEVEL GEARS AND WORM GEARS

Straight Bevel Gears-worm gears- Simple gear design procedure with problems

DESIGN OF GEAR BOXES

Design of multi speed gear box-Geometric progression - Standard step ratio - Ray diagram-

kinematics layout -- gear box design problems (No. of speeds not more than 12).

DESIGN OF CLUTCHES AND BRAKES

Design of plate clutches –axial clutches-cone clutches- internal and external shoe brakes-problems.

Text Books

1	Shigley, Mischke, Mechanical Engineering Design, Tata Mc Graw Hill.
---	---

2 Prabhu. T.J. - "Design of Transmission Elements"- Mani Offset- Chennai

Reference Books

- 1 Md.Jalaludeen- Machine Design- Anuradha Publicatiions,Chennai.
- 2 Maitra G.M. Prasad L.V. "Hand book of Mechanical Design"- II Edition- Tata McGraw-Hill
- **3** Design Data, PSG College of Technology, Coimbatore

Course Designers

S. No	Faculty Name	Designation	Department/ Name of the College	Email id
1	J.Senthil	Associate Professor	Mech / AVIT	jsenthil@avit.ac.in
2.	J.Santhosh	Assistant Profesor	Mech/VMKVEC	santhosh@vmkvec.edu.in

17MI	ECC14	н	БАТ	AND I	MASS	TRA	NSFE	R	Ca	tegory	L	Т	Р	C	redit
1/1011		r 11				INA		IX .		CC	2	1	0		3
Prean The pu Extens	ırpose					nable	student	ts und	erstoo	d differ	ent prir	nciples of	heat tr	ansfer a	nd its
Prere ENGI	quisite					MIC	S								
Cours	e Obj	ective													
	To ena Applic					their o	conduc	tion r	nechar	ism in	steady	state emp	hasizin	g on	
2		ble st	udents	unde	rstand	their o	conduc	tion r	nechar	ism in	unstead	ly state er	mphasiz	zing on	
					-	conve	ection a	and it	s appli	ication.					
4	To ass	ess va	rious o	conce	pts of	radiat	tion and	d Hea	t exch	angers.					
5	To ena	ible st	udents	s to un	dersta	nd Ma	iss tran	sfer a	nd its	applicat	ion.				
Cours	e Out	comes	s: On	the su	ccessf	ul con	npletio	on of t	he co	urse, st	udents	will be a	ble to		
CO1.				asic el ring aj			arious	mode	s of he	eat trans	fer	Unde	erstand		
CO2.							s using ologie		ous me	ethods		Apply	1		
CO3.				ncepts tandar			on syste	ems ir	n an er	igineeri	ng	Apply	7		
CO4.										of Heat roblems	•	Apply	1		
CO5.		•					iss tran differer		-			Apply	1		
Марр	ing wi	th Pr	ogran	ıme O	utcon	ies an	d Prog	gramı	ne Sp	ecific C	outcom	es			
CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO 3
CO1	М	М	М	L	-	-	-	-	-	-	-	-	L	-	-
CO2	S	S	S	М	-	-	-	-	-	-	-	-	М	-	-
CO3	S	S	S	М	-	-	-	-	-	-	-	-	S	-	-
CO4	S	S	М	М	-	-	-	-	-	-	-	-	М	-	-
CO5	S	S	S	М	-	-	-	-	-	-	-	_	М	-	-
S- Str	ong; N	/I-Me	dium;	L-Lo	w	L	ı I		L				<u>ı</u>	1	1
SYLI	ABUS	5													

CONDUCTION

Introduction -Fourier law of conduction- General equation in Cartesian coordinates- One dimensional steady state conduction across Large plane wall, Long cylinder and Sphere- Composite wall – Composite cylinder – Composite sphere, Overall heat transfer coefficients, Critical Radius of insulation, conduction with Heat generation, Thermal contact resistance – Heat transfer through Walls and Roofs-Fins or extended surfaces- Pin fins, annular fins, longitudinal fins- Problems.

TRANSIENT HEAT CONDUCTION

Introduction to Unsteady state conduction – Lumped system analysis, semi – infinite solids. Transient Heat Conduction in Large Plane Walls, Long cylinders and Spheres- Refrigeration and Freezing of Foods- Problems.

CONVECTION

Introduction – Physical Mechanism on Convection, Classification of Fluid Flows, Velocity Boundary Layer, Thermal Boundary Layer, Laminar and Turbulent Flows. External Forced convection – Flow over a Flat plate, cylinder, sphere and Tube Banks. Internal Forced Convection - Flow through pipes – annular spaces and noncircular conducts. Natural convection from vertical, inclined and horizontal surfaces. Boiling – Types of Boiling. Condensation – Types of Condensation- Problems.

RADIATION AND HEAT EXCHANGERS

Introduction – Thermal Radiation – Black body Radiation – Radiation Intensity- Radioactive Properties – Atmospheric and Solar Radiation – View Factor- Simple Problems- Black surfaces and Grey Surfaces – Net Radiation – Heat Transfer in Two and Three Surface Enclosures- Radiation Shield – Problems – Radiation Exchange with Emitting and Absorbing Gases.

Heat Exchangers- Types- Overall heat transfer co-efficient- Analysis of Heat Exchangers – LMTD method – Effectiveness - NTU Method – Selection of Heat Exchangers – Problems.

MASS TRANSFER

Introduction – Analogy between Heat and Mass Transfer – Mass Diffusion - Fick's law – Steady mass diffusion through a wall – Water vapour migration in buildings – Transient Mass Diffusion- Diffusion in a Moving Medium – Mass convection – Simultaneous Heat and Mass transfer – Problems.

TEXT BOOKS

- 1. YUNUS A CENGEL "Heat Transfer"- Tata Mc Graw Hill New Delhi.
- 2. KOTHANDARAMAN C.P "Fundamentals of Heat and Mass Transfer" New Age International.
- 3. SACHDEVA R C- "Fundamentals of Engineering Heat and Mass Transfer" New Age

Reference Books

- 1. OZISIK M.N- "Heat Transfer"- Tata McGraw-Hill Book Co.
- 2. NAG P.K- "Heat Transfer"- Tata McGraw-Hill- New Delhi.
- 3. HOLMAN J.P "Heat and Mass Transfer" Tata McGraw-Hill.
- 4. INCROPRA and DEWITE, Heat Transfer John Wiley.

Course Designers

SL.No	Faculty Name	Designation	Department/ Name of the College	Email id
1	R.Anandan	Associate Professor	Mechanical/VMKV EC	anandan@vmkvec.edu.in
2	C.Thiagarajan	Associate Professor	Mechanical/AVIT	cthiagarajan@avit.ac.in

17ME	CC15		FIN	ITE	ELE	MENT	Γ	Ca	tegor	y :	L	Т	Р	С	edit
1/1/11/2				ANA	ALYS	IS			CC		2	1	0		3
Preamb Finite E solving solution provides structura engineen Prerequ Strength	Elemen wide s, at a s the al and ring po uisite	variet sma basic therm bint of	ty of all fra theo nal an f view	engin ction retica alyses	eering of th l kno	g prob ne cost wledge	olems t of e to	FEA more comp	A can rigor petent	produ ous, c ly per	ce acc losed- form	curate, r form ar finite e	eliable alyses. lement	appro This analy	ximate course sis for
Course	Objec	tive													
1 To) learn	basic	princ	iples	of fin	ite elei	ment	analy	sis pr	ocedur	e				
2 St	udy the	e basi	cs of	Stand	ard tr	uss, be	eam, j	plane	triang	ular aı	nd qua	drilatera	l eleme	ents	
3 A1	nalysis	of or	ne and	l two-	dimer	nsional	l prot	olems							
4 Le	earn to	mode	el con	plex	geom	etry pr	oblei	ns an	d solu	tion te	chniqu	ies			
5 U1	ndersta	nd th	e con	cepts	of hea	at trans	sfer a	nd str	uctura	al anal	ysis				
Course	Outco	mes:	On t	he su	ccess	ful con	nplet	ion o	f the c	course	, stude	ents wil	l be abl	e to	
CO 1.	Solve	the p	hysic	al pro	blem	using f	funct	ional	appro	ximati	on met	hod.		A	pply
CO 2.	Derive and th		-		ctions	and s	tiffne	ess ma	atrix f	for one	e dime	nsional	structu	ral A	pply
CO 3.	Derive and th		-			and st	tiffne	ess ma	atrix f	for two	o dime	nsional	structu	ral A	pply
CO 4.	Derive	e the	shape	funct	tions a	and stif	ffness	s matr	rix for	Isopa	rametr	ic eleme	ents.	A	pply
CO 5.	Perfor corner				•	s of r	nech	anical	com	ponen	ts like	e beams	s, truss	es, A	pply
CO 6.	Perfor	m the	ermal	analy	sis of	compo	osite	walss	, com	posite	cylind	ers and	fins	A	pply
CO 7.	Perfor and sp						nalys	is of	mecha	anical	compo	onents li	ike bea	ms A	apply
Mappin	ng with	n Pro	gram	me O	utcor	nes an	d Pr	ogran	nme S	Specifi	c Out	comes			
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1.	S	S	S	М	_	_	_	_	_	_	_	_	S	_	М

CO2.	S	S	S	М	_	_	_	_	_	_	_	_	S	S	S
CO3.	S	S	S	М	_	_	_	_	_	_	_	_	S	S	S
CO4.	S	S	S	М	_	_	_	_	_	_	_	_	S	М	S
CO5.	S	S	S	М	S	_	_	_	_	_	_	_	S	_	S
CO6.	S	S	S	М	S	_	_	-	-	_	_	_	S	S	S
CO7.	S	S	S	М	S	_	_	_	_		_	_	S	_	S

S- Strong; M-Medium; L-Low

SYLLABUS

BASIC CONCEPTS OF THE FINITE ELEMENT ANALYSIS

Basics of FEA, Derive the stiffness matrix of Spring, bar and beam elements – Derive the stiffness matrix of beam elements – Problems on spring and bar elements – Local and global coordinate systems – assembly of elements, calculation of element stress – simple applications, trusses, Drive the stiffness matrix – Problems on Trusses, stiffness matrix calculation, Member stress calculation.

VARIATIONAL AND WEIGHTED RESIDUAL APPROACHES

Variational problems, Euler's Equation – Problems on solving first order differential using 2-node 1D element – Example problems, solving first order differential equation using 1D-sub-parametric elements – Weighted residual approaches, Galerkin formulation and Point-collocation – Problems on Galerkin formulation and Point-collocation simple regular beam sections with different types of loads – Sub-domain collocation, Least-square minimization – Problems on Sub-domain collocation and Least-square minimization regular beam sections with different types of loads.

TWO DIMENSIONAL ISOPARAMETRIC ELEMENTS AND GAUSS NUMERICAL INTEGRATION

Natural coordinate systems – Interpolation function for Triangular Elements (CST, LST and QST) – Interpolation function for 4-node, 8-node and 9-node quadrilateral Elements – Element stiffness matrix formulation for two dimensional elements – Gauss Numerical Integration – Derivation of one point and two point formula (1D problems).

EIGEN VALUE PROBLEMS FOR ONE DIMENSION PROBLEMS (DYNAMIC CONSIDERATION)

Formulation – Hamilton's Principle – Characteristic polynomial Technique – Element mass matrix formulation for one dimensional Elements (2-node isoparametric and 3-node sup-parametric elements) – Problems for 1-D Problems to find eigenvalues and eigenvectors using 2-node isoparametric and 3-node isoparametric.

STEADY STATE HEAT TRANSFER ANALYSIS

Introduction, straight uniform fin analysis, Derivation 1D Element matrices – Problems on straight uniform fin analysis and Taper fin analysis Heat Flex Boundary Conditions – Analysis of uniform fins using 1D Quadratic Elements – Two Dimensional Steady state Problems using CST Elements – 1-D and 2-D simple Problems using any commercial FEA software.

Text Books

- **1** Hutton, D.V., "Fundamentals of Finite Element Analysis", McGraw Hill, International Edition, 2004.
- 2 Segerlind, L.J., "Applied Finite Element Analysis", John Wiley & Sons, 1984.

Reference Books

- 1 Chandrupatla, T.R., Belegundu, A.D., "Introduction to Finite Elements in Engineering", Prentice Hall of Ind ia, 2002.
- 2 Zienkiewicz, O.C., "Finite Elements and Approximation", Dover International, 2006.
- 3 Cook R.D., Malkus, D.S., Plesha, M.E., Witt, R.J., "Concepts and Applications of Finite Element Analysis", 4th Edition, John Wiley & Sons, 2001.

Course Designers

S.No.	Faculty Name	Designation	Department/Name of the College	Email id
1	K.Vijayakumar	Assistant Professor	Mech / AVIT	<u>vijayakumar@avit.ac.in</u>
2.	J.Santhosh	Assistant Profesor	Mech/VMKVEC	santhosh@vmkvec.edu.in

1To2To3To3To4To5ToCourse OutcoCO1.ExplaindustCO2.ExplaindustCO3.CO4.Develproced	he need, evo lifferent aut NIL tive ain the facto trate about I gn the vario gn about PL rate the auto omes: On the in the facto ologies in n in the vario trial applica lop the pneu cations usin	ory auto hydrau bus desi ous desi omatio he succ ory auto nanufac bus Hyd utions umatic	omatio lics an ign of its app n in tra cessful omation cturing draulic	notivat tegies b on and i d pneu pneum plication ansfer t compl n, prod g sector s and F	integra integra imatic matic a machi letion luction	or Indu used in ation ation s circu nd elect ines & a of the n syste	n practi nits ctro-pn assem e cours	eumatic bly.	ents wi	miliar s l be a			
To introduce the concepts and dependences Prerequisite Course Object 1 To explate 2 To Illust 3 To Design 4 To design 5 To illust Course Outco CO1. Explate CO2. Explate indust CO3. CO4. Devel proced CO5.	tive tive in the factor trate about I gn the vario gn about PL rate the autor ones: On the in the factor ologies in n in the varior trial applications usin	ory auto hydrau bus desi ous desi omatio he succ ory auto nanufac bus Hyd utions umatic	omatio lics an ign of its app on in tra cessful pomation cturing draulic	on and i on and i d pneum pneum plication ansfer : compl n, prod g sector s and F	integra integra imatic matic a machi letion luction	ation ation	n practi nits ctro-pn assem e cours	eumatic bly.	ents wi	s I be a	able to		
Course Object1To explate2To Illust3To Design4To design5To illustCourse OutcoCO1.ExplateCO2.ExplateindustCO3.DevelCO4.DevelprocedConst	tive in the factor trate about 1 gn the varior gn about PL rate the autor omes: On the in the factor ologies in n in the varior trial applications usin	hydrau bus desi ous desi ous desi omatio he succ nanufac ous Hyd utions umatic	lics an ign of its app n in tra cessful omation cturing draulic	d pneum pneum blicatio ansfer : comp n, prod g sector s and F	imatic natic a ons machi letion r	nd elec ines & of the	ctro-pn assem e cours	bly. s e, stud	ents wi	l be a		Ind	
1To expla2To Illust3To Desig4To desig5To illustCourse OutcoCO1.ExplaCO2.ExplaindustCO3.CO4.DevelprocedCost	ain the factor trate about l gn the vario gn about PL rate the autor omes: On the in the factor ologies in n in the vario trial applicator top the pneu- cations usin	hydrau bus desi ous desi ous desi omatio he succ nanufac ous Hyd utions umatic	lics an ign of its app n in tra cessful omation cturing draulic	d pneum pneum blicatio ansfer : comp n, prod g sector s and F	imatic natic a ons machi letion r	nd elec ines & of the	ctro-pn assem e cours	bly. s e, stud	ents wi	l be a		Ind	
1 To Illust 2 To Illust 3 To Desig 4 To desig 5 To illust Course Outco CO1. CO2. Explatechno CO3. Devel applic CO4. CO5 Const	gn the vario gn the vario gn about PL rate the auto omes: On the in the facto ologies in n in the vario trial applica lop the pneu cations usin	hydrau bus desi ous desi ous desi omatio he succ nanufac ous Hyd utions umatic	lics an ign of its app n in tra cessful omation cturing draulic	d pneum pneum blicatio ansfer : comp n, prod g sector s and F	imatic natic a ons machi letion r	nd elec ines & of the	ctro-pn assem e cours	bly. s e, stud	ents wi	l be a		und	
2 3 To Desig 4 To desig 5 To illust Course Outco CO1. Expla technol Expla indust CO3. CO4. Devel proced CO5 Const	gn the vario gn about PL rate the auto omes: On the in the facto ologies in n in the vario trial applica lop the pneu cations usin	bus desi C and omatio he succ ry auto nanufac us Hyd utions umatic	ign of its app n in tra cessful omation cturing	pneum plication ansfer : compl n, prod g sector s and F	natic a ms machi letion r	nd elec ines & a of the n syste	ctro-pn assem e cours	bly. s e, stud	ents wi	l be a		Ind	
4To desig5To illust5To illustCourse OutcoCO1. Expla technoCO2. Expla industCO3. Devel applicCO4. Devel procesCO5Const	gn about PL rate the auto omes: On the in the facto ologies in n in the vario trial applica op the pneu cations usin	C and omation he succo ry auto nanufaco us Hyco utions umatic	its app its app in in tra cessful omation cturing draulic	ansfer : ansfer : compl n, prod g sector s and F	ns machi letion luction r	ines & a of the n syste	assem	bly. s e, stud	ents wi	l be a		ind	
To illust5To illustCourse OutcoCO1.Expla technoCO2.Expla industCO3.Devel applicCO4.Devel procesCO5Const	rate the auto mes: On the in the facto ologies in n in the vario trial applications usin	omatio he succ ry auto nanufac us Hyd utions umatic	on in tra cessful omation cturing draulic	ansfer : compl n, prod g sector s and P	machi letion luction r	n of the n syste	e cours	se, stud				ind	
Course Outco CO1. Expla techno CO2. Expla indust CO3. Devel applic CO4. Devel procee	omes: On the facto ologies in n in the vario trial applicator op the pneu cations usin	he succ ory auto nanufac ous Hyc utions umatic	cessful omation cturing draulic	l comp n, prod g sector s and P	letion luction	n of the n syste	e cours	se, stud				und	
CO1. Expla techno CO2. Expla indust CO3. Devel applic CO4. Devel proces	in the facto ologies in n in the vario trial applica op the pneu cations usin	ry auto nanufac ous Hyc utions umatic	omation cturing draulic	n, prod g sector s and P	luction r	n syste						ind	
CO2. Expla indust CO3. Devel applic CO4. Devel proces	ologies in n in the vario trial applica op the pneu cations usin	nanufac ous Hyd tions umatic	cturing draulic	g sector \overline{s} and \overline{F}	r	•	em and	integra	tion		Understa	ind	
CO2. indust CO3. Devel applic CO4. Devel procee	trial application the pneu cations using	utions umatic			Pneum	atics I							
CO3. Devel applic CO4. Devel procee	lop the pneu cations usin	umatic	and el				Elemen	ts used	for the		Understa	ind	
CO5 Const	on PLC for	5 Stund				atic ci	rcuits	for the g	given		Apply		
	·	· moder	rn mar	nufactu	iring a	applica	tions u	ising sta	indard		Apply		
	ruct the aunation	ıtomati	ic trans	sfer ma	achine	es & as	sembly	4			Apply		
Mapping with	ı Programı	me Out	tcome	s and]	Progr	amme	e Speci	fic Out	comes				
CO PO 1	PO PO 2 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSC 3
CO1 S		-	-	-	-	-	-	-	-	-	M	-	-
CO2 S		-	-	-	-	-	-	-	-	-	М	-	-
CO3 S	L L	L	М	-	-	-	-	-	-	-	М	-	-
CO4 S	L S	L	М	-	-	-	-	-	-	-	М	-	-
CO5 S	L M	М	М	-	-	-	-	-	-	-	М	-	-
S- Strong; M-		141											

INTRODUCTION TO FACTORY AUTOMATION AND INTEGRATION

Basic concepts and scope of industrial automation, socio-economic considerations, modern developments in automation in manufacturing and its effect on global competitiveness.-Need and implications of automation in manufacturing- Different types of production systems and automation-Hard/fixed automation

INTRODUCTION TO HYRDAULICS AND PNEUMATICS

Basic elements of hydraulics and pneumatics, electro-pneumatic controls and devices, electropneumatic systems, fluid power control elements and standard graphical symbols for them, construction and performance of fluid power generators, hydraulic and pneumatic actuators, their design and control devices-Sequence operation of hydraulic and pneumatic actuators-Applications in manufacturing- Hydraulic & pneumatic valves for pressure, flow & direction control, servo valves and simple servo systems with mechanical feedback, solenoid-Different sensors for hydraulic, pneumatic & electro-pneumatic systems.

DESIGN OF PNEUMATIC AND ELECTRO-PNEUMATIC LOGIC CIRCUITS

Logic circuits to be designed for a given time displacement diagram or sequence of operation-Pneumatic safety and control circuits and their applications to clamping, traversing and releasing operations.

PROGRAMMABLE LOGIC CONTROLLERS (PLC)

PLC for design demonstration, programming and interface the hardware with software for modern manufacturing applications.

AUTOMATIC TRANSFER MACHINES & ASSEMBLY AUTOMATION

Classifications, analysis of automated transfer lines, without and with buffer storage, group technology and flexible manufacturing system- Types of assembly systems, assembly line balancing, performance and economics of assembly system.

Text Books

- 1 Esposito, A., 2000. *Fluid power with applications*. Upper Saddle River: Prentice-Hall International.
- 2 Majumdar, S.R., 1996. *Pneumatic systems: principles and maintenance*. Tata McGraw-Hill Education.
- ³ Bolton, W., 2003. *Mechatronics: electronic control systems in mechanical and electrical engineering*. Pearson Education.

Reference Books

 1
 Auslander, D.M. and Kempf, C.J., 1996. Mechatronics: mechanical systems interfacing. Prentice Hall.

 2
 Deppert, W. and Stoll, K., 1975. Pneumatic Control. Vogel.

 3
 Merritt, H.E., 1991. Hydraulic control systems. John Wiley & Sons.

 Course Designers

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	M.SARAVANAN	ASST. PROF	MECH./ AVIT	saravanan@avit.ac.in
2	S.NATARAJAN	Assoc.Prof	MECH/VMKVEC	natarajans@vmkvec.edu.in

17ME	CC17	,			MOT			Cate	egory	L		Т	Р	Cro	edit
			Eľ	NGIN	EER	ING		C	C	3		0	0		3
princip	compl pal par	ts of a	n auto	omob	ile, ad	lvance	ement	in eng	gine c	ontrol	system	s, woi	nd arran king of systems	transm	
Preree	quisit	e : NI	L												
Cours	e Obj	ective	ļ												
1	Го unc	lerstar	nd the	const	ructio	on and	work	ting of	f diffe	rent en	gine co	ompor	nents.		
2	Го und	lerstar	nd abo	out the	diffe	rent a	uxilia	ry sys	tems	of an a	utomo	bile.			
3	Го der	nonstr	ate ab	out th	ne trar	nsmiss	sion s	ystem	of an	autom	obile.				
_	Го der	nonstr	ate th	e diff	erent	types	of ste	ering,	brake	es and s	uspens	sion sy	stems o	of an	
2	utom		the w	rious	mode	orn alt	ornot	a taab	nolog	ies of a	utomo	hilos			
5		istrate		anous	mout		cinau		liolog		utomo	unes.			
Cours	e Out	come	s: On	the s	ucces	sful c	omple	etion	of the	cours	e, stud	ents v	vill be a	ble to	
CO1.	Des	cribe t	he bas	sic lay	/-out (of an a	autom	obile.					Underst	and	
CO2.	Diff engi		ate bet	tween	the v	vorkir	ıg prii	nciple	of pe	trol and	l diese	1	Underst	and	
CO3.	0		e prin	ciples	s of tr	ansmi	ssion	systei	ns of	the aut	omobi	le	Apply		
CO4.	Iden	tify th	e diff	erent	types	of sus	spensi	on an	d brał	king sys	stems		Apply		
CO5.	Dem	ionstra	te the l	latest o	develo	pment	s in th	e file (of auto	omobile	s.		Apply		
Марр	ing w	ith Pr	ogran	nme (Outco	omes a	and P	rogra	mme	Specif	ic Out	come	5		
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO
CO1	S	L	L	L	-	-	-	-	-	-	-	-	S	-	
CO2	S	L	L	L	-	-	-	-	-	-	-	-	S	-	-
CO3	S	М	М	М	-	-	-	-	-	-	-	-	S	-	-
	S	М	М	М	-	-	-	-	-	-	-	-	S	-	-
CO4		1	ļ								1		G		
CO4 CO5	S	М	М	Μ	-	-	-	-	-	-	-	-	S	-	-

VEHICLE STRUCTURE AND ENGINES

Types of automobiles, vehicle construction and different layouts, chassis, frame and body, IC Engine – Classification, components of engine and their functions.

ELECTRONIC ENGINE CONTROL SYSTEMS

Electronically controlled gasoline injection system for SI engines, Electronically controlled diesel injection system – Unit injector system, Rotary distributor type and common rail direct injection system, Electronic ignition system, Types of Sensor

TRANSMISSION SYTEMS

Clutch-types and construction, gear boxes- manual and automatic, gear shift mechanisms, over drive, transfer box, fluid flywheel – propeller shaft, slip joints, universal joints, Differential and rear axle, Hotchkiss Drive and Torque Tube Drive.

STEERING, BRAKES AND SUSPENSION SYSTEMS

Steering geometry, Types of steering gear box-Power Steering, Types of Front Axle, Types of Suspension Systems, Pneumatic and Hydraulic Braking Systems, ABS and Traction Control

ALTERNATIVE FUELS & EMISSION SYSTEM

Liquefied Petroleum Gas, Bio-fuels in Automobiles- Electric and Hybrid Vehicles, Fuel Cell. Engine modifications required –Performance, Engine emission control by three way catalytic converter system, Turbo chargers, EGR.

Text I	Books
--------	-------

1	R.B. Gupta- "Auto	omobile Enginee	ering "- SatyaPrakash	an								
2	Kirpal Singh, " Au Edition, New Del	•	eering Vol 1 & 2 ", S	Standard Publishers, Seventh								
3	Jain, K.K., and As New Delhi	sthana .R.B, "Au	tomobile Engineerin	g" Tata McGraw Hill Publishers,								
4	Ganesan. V "Inter	nal combustion	Engine									
Refere	ence Books											
1	William Crouse- "	'Automobile Eng	gineering Series "- M	lcGraw-Hill								
2	Newton and Steeds- "Motor Vehicles "- ELBS											
3	Duffy Smith- "Auto Fuel Systems "- The Good Heat Willcox Company Inc.											
4	Osamu Hirao and Wiley and Sons	Richard K. Pefle	ey- "Present and Futu	are Automotive Fuels "- John								
Cours	e Designers		-									
S.No	Faculty Name	Designation	Department/Na me of the College	Email id								
1	S.Sangeetha	Assoc.Prof	MECH/AVIT	sangeethas@avit.ac.in								
2	S. Raja	ASST PROF	MECH/VMKVEC	raja@vmkvec.edu.in								

17M	ECC1	8	MAI	NUFA	CTUI	RING		Ca	tegor	y	L	Т	Р	Cre	dit
		0		INEE					CC		3	0	0		3
		-	-		0						uring	process	es, whic	h are u	sed in
Prereg	luisite :	NIL													
Course	e Objec	ctive													
	Fo und echnol		the m	anufac	turing	g proc	ess of	conv	entior	nal and	speci	al casti	ng proce	ss of fo	undry
			knowl	edge o	f varie	ous ty	pes w	elding	g proc	ess in	metal	joining	process	es.	
	To kno operatio								conve	entiona	l, con	vention	al machi	ning	
4	To imp process	art the es in p	basic l lastics	knowle	edge a	nd wo	orking	; princ	-			-	nd the m	-	
5	Fo imp bowder	art the	knowl	edge o	f varie	ous m	etal fo	ormin	g proc	cesses a	and m	anufact	uring pro	ocess of	f
Course	e Outco	omes: (On the	success	ful co	mplet	ion of	the co	ourse,	studen	ts will	be able	to		
CO1.	identi	ify the										cesses metal	and to casting	under	stand
CO2.	processesunderstandDiscuss the working principles of various metal joining processes and machines/equipments used and Select the suitable joining methods for fabrication/ assembly of products.understandExamine the working principle of various conventional machine tools, workApply														
CO3.			e worl entiona		-				nventi	onal r	nachii	ne tools	, work	Appl	у
CO4.			e types racteris									ılding p	process	Appl	у
CO5.			oncept				<u> </u>	i				urgy.		Appl	у
Mappi	ing with	n Prog	ramme	Outco	mes a	nd Pro	ogram	nme Sj	pecific	Outco	mes				
СО	PO 1	PO2	PO3	PO4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO 3
CO1	S	М	-	-	-	-	-	-		-	_	-	S	-	-
CO2	S	М	-	-	-	-	-	-	-	_		-	S	-	-
CO3	S	М	L	-	-	-	-	-	-	_		M	S	-	-
CO4	S	L	L	_	-	-	-	-	-	_		М	S	-	-
CO5	S	L	L	-	-	-	-	-	-	-		M	S	-	-
S- Stro	ong; M	Mediu	ım; L-I	LOW							L		1	<u>.</u>	1

Introduction to Casting technology

Casting types, procedure to make sand mould, types of core making, moulding tools, machine moulding, special moulding processes– CO_2 moulding, shell moulding, investment moulding, permanent mould casting, pressure die casting, centrifugal casting, continuous casting and identify casting defects and remedies.

Welding

Classification of welding processes. Principles of Oxy-acetylene gas welding. A.C metal arc welding, Resistance welding, Submerged arc welding, tungsten inert gas welding, metal inert gas welding, plasma arc welding, thermit welding, electron beam welding, laser beam welding, and identify defects in welding process - Soldering and brazing.

Machining

General principles (with schematic diagrams only) of working and commonly performed operations in the following machines: Lathe, Shaper, Planner, Horizontal milling machine, Universal drilling machine, Cylindrical grinding machine, Capstan and Turret lathe. Basics of CNC machines. General principles and applications of the following processes: Abrasive jet machining, Ultrasonic machining, Electric discharge machining, Electro chemical machining, Plasma arc machining and Electron beam machining and Laser beam machining.

Forming and shaping of plastics

Types of plastics - Characteristics of the forming and shaping processes – moulding of thermoplastics– working principles and typical applications of- Injection moulding – Plunger and screw machines– Blow moulding – rotational moulding – film blowing – extrusion- typical industrial applications – Thermoforming – processing of thermo sets– working principles and typical applications- Compression moulding – Transfer moulding – Bonding of thermoplastics– Fusion and solvent methods – Induction and ultrasonic methods.

Metal forming and powder metallurgy

Principles and applications of the following processes: Forging, Rolling, Extrusion, Wire drawing and Spinning, Powder metallurgy – Principle steps involved advantages, disadvantages and limitations of powder metallurgy.

1	S.K.HajraChoudhury and A.K. HajraChoudhury, ' Elements of Work shop Technology ', Vol – I & II Manufacturing Processes, Media Promoters and Publishers Pvt. Ltd, 1986.
2	Mikell P.Groover, ' Fundamental of Modern Manufacturing ', Wiley India Edition, Third Edition, Reprint, 2012.
3	P.C. Sharma, 'A Text Book of Production Technology (Manufacturing Processes)', S.
-	Chand & Company Ltd., New Delhi, Seventh Reprint, 2012.
Refere	nce Books
1	Serope Kalpajian, Steven R.Schmid, "Manufacturing Processes for Engineering Materials",
-	4/e, Pearson Education, Inc. 2007
2	Jain. R.K., and S.C. Gupta, "Production Technology", 16th Edition, Khanna Publishers, 2001
2	E.Paul Degarmo, J.T.Black, and Ronald A. Konser, 'Materials and Processes in Manufacturing',
3	5th Edition, Prentice Hall India Ltd., 1997.

Course	Course Designers												
S.No	Faculty Name	Designation	Department/ Name of the College	Email id									
1	S. ARUNKUMAR	Assistant Professor	MECH / VMKVEC	arunkumar@vmkvec.edu.in									
2	M.SARAVANA KUMAR	Asst. Prof	MECH / AVIT	saravanakumar@avit.ac.in									

17MECC20		0				'IONA URIN(Cate	gory	L		Т	Р	Cre	edit
17MECC20 MANUFACTURING PROCESS CC 3 0 0 Preamble CC 3 0 0											3				
Thi pro	This course aims to teach the various advanced manufacturing processes used in industries for making products. The students will get complete knowledge of the unconventional processes in terms of aspects stated above.														
Prere	Prerequisite – Nil														
Course Objective															
1	1 To discuss the basic concepts of various unconventional machining processes														
2	To Demonstrate the Mechanical energy based unconventional machining processes.														
3	To Demonstrate the Electrical energy based unconventional machining processes.														
4	To Den	nonstra	te the	Chem	ical &	Elect	o-Chemi	ical en	ergy b	ased un	convent	tional	machinin	g proce	sses.
5	To Den	nonstra	te the	Thern	nal ene	ergy ba	ased unco	onventi	ional n	nachinir	ng proc	esses.			
Cours	se Outc	omes:	On th	e succ	essful	comp	letion of	f the co	ourse,	studen	ts will	be able	e to		
CO1.			e basi	c con	cepts	of var	ious uno	conver	ntional	machi	ining		Understa	ind	
CO2.	-		e Mec	hanic	al ene	ergy b	ased und	conver	ntional	mach	ining		Apply		
CO3.	Illus	trate t	he Ele	ectrica	ıl ener	rgy ba	ised unc	onven	tional	machi	ning		Apply		
CO4.	Exp	lain th						al ener	rgy ba	sed			Apply		
CO5.	Illus	trate t	he Th	ermal	energ	gy bas	ed unco	nventi	onal 1	machin	ing		Apply		
	proc	esses													
Mapp	oing wit	h Prog	gramn	ne Ou	tcome	s and	Progran	nme Sj	pecific	Outco	mes				
СО	PO1	РО	РО	РО	РО	PO	PO7	PO	РО	PO1	PO1	PO1	PSO	PSO	PSO
	1 To discuss the basic concepts of various unconventional machining processes 2 To Demonstrate the Mechanical energy based unconventional machining processes. 3 To Demonstrate the Electrical energy based unconventional machining processes. 4 To Demonstrate the Thermal energy based unconventional machining processes. 5 To Demonstrate the Thermal energy based unconventional machining processes. Course Outcomes: On the successful completion of the course, students will be able to CO1. Discuss the basic concepts of various unconventional machining processes. Understand CO2. Explain the Mechanical energy based unconventional machining processes. Understand CO3. Illustrate the Electrical energy based unconventional machining processes Apply CO4. Explain the Chemical & Electro-Chemical energy based unconventional machining processes Apply CO3. Illustrate the Thermal energy based unconventional machining processes Apply CO5. Illustrate the Thermal energy based unconventional machining processes Apply CO3. Illustrate the Thermal energy based unconventional machining processes Apply CO5. Illustrate the Thermal energy based unconventional machining processes Apply CO6 PO1 P					3									
															M
		-													M
CO3	S	-	-			-	-	-	-	-		-		-	М
CO4	S	-	-	Μ	М	-	-	-	-	-	М	-	S	-	М
CO5	S	-	-	М	М	-	-	-	-	-	М	-	S	-	М
S- Str	ong; M	-Medi	um; I	L-Low									•		

INTRODUCTION

Unconventional machining Process – Need – classification – Brief overview–merits –demerits– Applications

MECHANICAL ENERGY BASED PROCESSES

Abrasive Jet Machining – Water Jet Machining – Abrasive Water Jet Machining - Ultrasonic Machining. Working Principles & Applications – equipment used – process parameters – MRR - Variation in techniques used.

ELECTRICAL ENERGY BASED PROCESSES

Electric Discharge Machining - working principle and applications – equipments - process parameters - surface finish and MRR- Power and control circuits–Wire cut EDM – working principle and Applications.

CHEMICAL AND ELECTRO-CHEMICAL ENERGY BASED PROCESSES

Chemical machining and Electro-Chemical Machining- Electro Chemical Grinding and Electro chemical Honing-working principle and applications-Process Parameters -Surface finish and MRR -Etchants- Maskants

THERMAL ENERGY BASED PROCESSES

Laser Beam Machining and drilling, Plasma Arc Machining and Electron Beam Machining Working principles & Applications – Equipment –Types - Beam control techniques. Micromachining and Nanofabrication Techniques

1	Vijay.K. Jain "Advanced Machining Processes" Allied Publishers Pvt. Ltd.										
2	P.K.Mishra, "Non Conventional Machining " The Institution of Engineers (India) Text Books: Series.										
Refere	eference Books										
1	Benedict. G.F. "Nontraditional Manufacturing Processes" Marcel Dekker Inc., NewYork										
2	Pandey P.C. and S	Shan H.S. "Modern	Machining Processe	es" Tata McGraw-Hill, New Delhi.							
3	Paul De Garmo, J Manufacturing"	.T.Black, and Rona	ald.A.Kohser, "Mater	rial and Processes in							
Course	e Designers										
S.No	Faculty Name	Designation	Department/Name of the College	Email id							
1	S.PRAKASH	Assistant Professor (Gr-II)	Mech / AVIT	prakash@avit.ac.in							
2	M SARAVANAN	Asst Prof	Mech / VMKVEC	saravananm@vmkvec.edu.in							

17MF	ECC82		MACHINE DRAWING						Cate	gory	L	Т	P	C	redit	
1/1/11	20002		LABORATORY					C	С	1	0	4		2		
nform he pre produc Standa	ne Drav ation re paratic	equir on of rding	ed for orthog size, s	the m graphic shape,	anufac c proje mater	ture a ctions ial, pr	nd ass of var ocesse	embly rious n s, surf	of the nachir ace fii	e compo ne parts	onents on and ass	of a mac semblie	chine. It s and al	furnish a deals w l details er Indiar	ith of	
	e Obje	ctive														
1	Use lir	nits,	fits a	nd tol	erance	es in r	eal w	orld p	roble	ms.						
2	Apply	pply different sectional views in drawings.														
3	Recog	nize	the dr	awing	g nota	tions	of sta	ndard	mach	ine ele	ements.					
4	Draw t	the as	ssemt	oly dra	awing	•										
5	Draw t	he d	etaile	d drav	ving o	of give	en coi	npone	ents.							
Cours	e Oute	omos	. On	tha cu	coosef	ul cor	nnlati	on of t	he co	urso st	udonte	will be	able to			
							-					will be				
CO1.	Asso	ociate	e limit	s, fits	and to	leranc	es in r	eal wo	orld pro	oblems				Understand Understand		
CO2.	Sket	ch th	e sect	ional v	views	of sim	ple ele	ements	•					Understa	anu	
CO3.	Мос	lel th	e star	ıdard r	nechai	nical e	lemen	ts like	bolt,n	ut,scre	w etc.			Apply	/	
CO4.	Mod	lel th	ne asse	embly	drawi	ng of l	Mecha	nical o	compo	nents				Apply	/	
CO5.	Mod	lify t	the rea	l prod	ucts to	o Macl	hine di	rawing	τ					Apply		
Mann		-		-						ecific (Dutcom	les				
	<u> </u>	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PS	
CO	1	2	3	4	5	6	7	8	9	0	1	2	1	2	03	
CO1	S	S	-	-	-	-	-	-	-	-	-	-	L	-	-	
CO2	S	L	S	L	-	-	-	-	-	-	-	-	L	-	-	
CO3	S	L	-	L	-	-	-	-	-	-	-	-	L	-	L	
CO4	S	М	L	L	-	-	-	-	-	-	-	-	L	-	L	
CO5	S	М	L	М	-	-	-	-	-	-	-	-	L	-	Μ	
S- Str	ong; M	[-Me	dium;	L-Lo	w		1	1	1	1	1	1	1			
	ABUS															

LIST OF EXPERIMENTS

UNIT 1 - LIMITS, FITS AND TOLERANCES

Limit System- Tolerance, Limits, Deviation, Actual Deviation, Upper Deviation, Lower Deviation, Allowance, Basic Size, Design Size, Actual Size. Fits- Types, Tolerances of Form and Position- Form and Position Variation, Geometrical Tolerance, Tolerance Zone, Indicating Geometrical Tolerances. Indication of Surface Roughness, Standard Abbreviations and Symbols used in industries.

UNIT II - SECTIONAL VIEWS

Sections- Hatching of Sections, Cutting Planes, Revolved or Removed Section, Sectional Views- Full Section, Half Sections and Auxiliary Sections- Conventional Representation-One-view, Two-view and three view Drawings.

UNIT III - INTRODUCTION TO MACHINE ELEMENT DRAWINGS

Drawing standards and Designation of Bolts, nuts, screws, keys, pins, Rivets, Welded Joints-Dimensioning of Welds, Belt Driven Pulleys, Chain and Gears Drives.

UNIT IV - ASSEMBLY DRAWINGS AND SECTIONAL VIEWS

Preparation of manual parts drawing and assembled sectional views from orthographic part drawings, Automobile components - stuffing box, Machine Tool Parts plummer block, Joints knuckle joints, Couplings Protected type flanged coupling, Bearings swivel bearing, Preparation of Bill of materials and tolerance data sheet.

UNIT V - REAL PRODUCTS TO MACHINE DRAWING CONVERSION

Preparation of manual parts drawing and assembled sectional views from real time products- Internal combustion engine parts, connecting rod, couplings - universal coupling, machine tool parts - tailstock, Automobile components screw jack, stuffing box - Commercial products - Preparation of Bill of materials and tolerance data sheet.

Bhatt-	Bhatt-N.D"Machine Drawing"-Published by R.C.Patel- Chartstar Book Stall- Anand-									
India-	2003									
P.S.G	. Design Data Book									
1	Bhatt-N.D"Machine Drawing"-Published by R.C.Patel- Chartstar Book Stall- Anand- India- 2003									
2	P.S.G. Design Data Book									
Refer	Reference Books									
1	N.D. Bhatt, Machine Drawing, Charotar Publishing House Pvt. Ltd., 2014									

2	P.S.Gill, A Textbook of Machine Drawing, Katson books, 2013											
3	R.K.Dhawan, A Textbook of Machine Drawing, S.Chand, 2012											
4	K.C. John, Textbook of Machine Drawing, PHI Learning Pvt. Ltd.,2009											
Cours	se Designers											
S.N o	Faculty Name	Designation	Department/ College	Email id								
1	R.VENKATESH	Assistant Professor	Mech / VMKVEC	rvenkatesh@vmkvec.edu.in								
2	A.IMTHIYAS	Assistant Professor	Mech / AVIT	imthiyas@avit.ac.in								

171		101	•			DCV	тар	,	C	ategor	y I	T	Р	Cr	edit
17MECC84		.04	METALLURGY LAB						CC	() 0	4		2	
	course as ma	terial												rous an metallu	
Prere	equisi	te - N	IL												
Cour	se Ol	ojectiv	ve												
1	vario	Understand the crystal structures and properties of various materials and also to study the various types of heat treatment methods of engineering materials Practice the methodologies of specimen preparation both ferrous and non ferrous													
2	mate				0	1		I 1							
3		rve th llurgic				of the	e ferr	ous ai	nd noi	ı ferrou	is mate	erial sp	becimei	ns throu	ıgh
Cour	se Ou	itcom	es: O	n the	succe	essful	comp	letio	n of tl	ne cour	rse, stu	dents	will be	able to)
CO1.							_				non fe nt proc		Und	erstand	
CO2.		aperin ferrou				prepa	aratio	n and	study	the mi	crostru	cture	App	oly	
CO3.		aperin non f		-		prepa	aratio	n and	study	the mi	crostru	cture	App	oly	
Map	ping v	with F	Progra	amme	e Out	comes	s and	Prog	ramm	ie Spec	cific Ou	utcom	es		
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	-	-	-	-	-	-	-	-	-	-	L	-	-	-
CO2	S	М	-	-	-	-	-	-	М	-	-	М	S	-	-
CO3	S	М	-	-	-	-	-	-	М	-	-	М	S	-	-
S- Str	ong; N	I-Medi	ium; L	-Low											

LIST OF EXPERIMENTS:

- 1. Introduction to Metallographic
- 2. Preparation of Metallographic specimen
- 3. Identification of Ferrous specimens (minimum 4)
- 4. Identification of Non-Ferrous specimens (minimum 2)
- 5. Heat treatment Annealing- comparison between annealed and un heat treated specimen
- 6. Heat treatment Normalizing- comparison between normalized and un heat treated specimen

- 7. Heat treatment Hardening- comparison between hardened and un heat treated specimen
- 8. Heat treatment -Tempering- comparison between hardened and un heat treated specimen

Text Books 1 **METALLURGY LAB - MANUAL Reference Books** William D Callister "Material Science and Engineering", John Wiley and Sons 2005. 1 Sydney H.Avner "Introduction to Physical Metallurgy" McGraw Hill Book Company. 2 **Course Designers Department**/ Email id S.No **Faculty Name** Designation College VIJAYA KUMAR Asst.Prof. MECH / vijaykumar@avit.ac.in 1 AVIT MECH / S. ARUNKUMAR arunkumar@vmkvec.edu.in Asst. Prof. 2 VMKVEC

171	IECC8	5 F	NCIN	г тг	STIN	G LA	P	Ca	tegor	y 2	L	Т	Р	Cre	edit
1/10	ILCCO	5 E	ношч		5111	G LA	D		CC		0	0	4	,	2
This	mble Labora ormance	•				U		tuden	ts, exp	erime	ntal kn	owledge	e on the	¢	
Prer NIL	equisit	9													
Cou	rse Obj	ective													
1	To pra engine		ne stuc	lents t	o get	the kn	owle	dge of	testin	ıg of fi	uels in	internal	combu	stion	
2	To pro	vide a	know	edge	in fue	ls and	lubri	cants	prope	rties.					
3	-						-					nce test o		-	
4	To pra combu				o get	the kn	owle	dge in	perfo	rmanc	e chara	acteristic	cs of in	ternal	
5	To pro	vide th	e stud	ents to	o get e	exposu	re in	variou	s biofi	uels.					
Cou	rse Out	comes	: On t	he su	ccessf	ful con	nplet	tion o	f the c	ourse	, stude	ents will	be abl	e to	
CO1	. To I	earn th	ne testi	ing of	vario	us fue	ls in i	interna	al com	bustio	n engi	nes.	Unde	rstand	
CO2	. Unc	lerstan	d the v	variou	s prop	perties	of fu	els an	d lubr	icatior	n prope	erties.	Unde	rstand	
CO3		lerstan htheor				valve	timin	g diag	ram a	nd con	npariso	on	Unde	rstand	
CO4		duct tl gle/ twi						datior	test c	on a fo	ur stro	ke	Apply	y	
CO5	. To	Perform	n test	on vai	riable	comp	ressio	on rati	o engi	ne wit	h biofı	ıel.	Appl	у	
Map	ping w	ith Pro	ogram	me O	utcor	nes ar	nd Pr	ogran	nme S	pecifi	c Outo	comes			
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Μ	L	-	-	-	-	-	-	-	-	-	-	S	-	-
CO2	2 M	-	-	-	-	-	-	-	-	-	-	-	S	-	-
CO3	3 L	L	-	-	-	-	-	-	-	-	-	-	S	-	-
CO4	L	L	-	-	-	-	-	-	-	-	-	-	S	-	-
CO5	5 M	L	L	-	-	-	-	-	-	-	-	-	S	-	-
S- Str	rong; M-	Mediun	n; L-Lo	W											

LIST OF EXPERIMENTS

1. Determination of Viscosity of the given specimen oil by using Red Wood Viscometer.

2. Determination of Flash Point and Fire Point of the given fuel sample.

3. Actual valve timing diagram of a four stroke engine and comparison with theoretical valve timing diagram.

4. Actual port timing diagram of a two stroke engine and comparison with theoretical port timing diagram.

5.Performance test on a four stroke single/ twin cylinder diesel engine.

6. Determination of frictional power of a four cylinder petrol engine by conducting a Morse test.

7. Conduct a retardation test and determine frictional power in a diesel engine.

8. Performance test on variable compression ratio engine with biofuel.

Text Books

1

ENGINE TESTING LAB Manual

S.No	Faculty Name	Designation	Department/Na me of the	Email id
1.	A.SENTHILKUMAR	AP-II	MECH/AVIT	senthilkumar@avit.ac.in
2.	R.Anandan	Associate Professor	Mechanical/VMK VEC	anandan@vmkvec.edu.in

1717	ECCO		YNA	MICS	S AN	D			Ca	tegory	L	Т	Р	C	redit
1/101	ECC8	IV.	IETR AB	OLO	GY					CC	0	0	4		2
Prea	mble		AD												
	aim of mics a				-		isic ki	nowle	dge i	n mecł	nanism	s related	to ma	chine	
	equisi			ing in	Struit										
Cour	se Ob	jecti	ve												
1	To le with r						egula	tion t	he spe	eed as	an eng	ine expe	riment	al setu	ıps
2	To en with e										s, vibra	ations of	the m	achine	parts
3	To ma	ake s	tuden	ts und	lersta	nd the	e conc	cepts	of ang	gular n	neasure	ement			
4	To provide the two tensors and the tensors and the tensors and the tensors and the tensors are tensors and tensors and tensors are tensors are tensors and tensors are tensors										ed, dis	splaceme	ent, ten	nperati	ure
5	To pr	ovide	e the c	concep	ots of	meas	urem	ent of	the c	utting	forces	with exp	perime	ntal se	tups
Cour	se Ou	e Outcomes: On the successful completion of the course, students will be able to													
CO1.	Lea	Learn the concepts applied in dymanics and metrology lab Understand													
CO2.	vibr	ating	, equij	pment	ts					-	amic a			Appl	у
CO3.	Mal	ke us	e of s	tatic e	equip	ments	,for 1	meast	ire the	e angle	e, conto	our		Appl	у
CO4.	Exp	erim	ent w	ith pro	oper e	equipr	nents	for f	low,te	emp,sp	eed			Appl	у
CO5.	Exp	erim	ent wi	ith dy	namic	equi	pmen	ts ,fo	r mea	sure th	e force	es, angle	s .	Analyz	ze
Map	ping v	vith 1	Progr	amm	e Ou	tcome	es an	d Pro	gram	me Sp	oecific	Outcom	ies		
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	S	L	L	L	-	-	-	-	-	-	-	L	-	-
CO2	S	М	М	L	L	-	-	-	-	-	-	-	L	-	-
CO3	S	L	М	М	L	-	-	-	-	-	-	-	L	-	-
CO4	S	S	М	М	М	-	-	-	-	-	-	-	L	-	-
CO5	S	S	L	М	М	-	-	-	-	-	-	-	L	-	-
S- Str	ong; M	-Med	ium; I	L-Low		I		I	I				1	1	I

LIST OF EXPERIMENTS

1. To perform an experiment on Watt and Porter Governor to prepare performance characteristic curves and to find stability and sensitivity

2. To determine the position of sleeve against controlling force and speed of a Hartnell governor and to plot the characteristic curve of radius of rotation

3. To analyse the motion of a motorized gyroscope when the couple is applied along its spin axis and determine gyroscopic couple

4. Determine the Moment of Inertia by compound pendulum and tri-filar suspension.

5. To determine the frequency of undamped free vibration and damped forced vibration of an equivalent spring mass system.

6. To determine whirling speed of shaft theoretically and experimentally.

7. Angular Measurements using Bevel Protector and Sine Bar

8. Flow Measurement using a Rotameter.

9. Fundamental dimension measurement of a gear using a contour projector.

10. Measurement of Displacement using Linear Variable Differential Transducer.

11. Measurement of speed of Motor using Stroboscope.

12.Measurement of cutting forces using Lathe Tool Dynamometer

TEXT BOOKS

- 1. Dynamics lab manual
- 2. Metrology and Measurements lab Manual

	e Designers			
S.No	Faculty Name	Designation	Department/ Name of the College	Email id
1	R.MAHESH	ASSISTANT PROFESS OR	Mechanical/AVIT	mahesh@avit.ac.in
2	J RABI	Asso Prof	Mechanical/VMK VEC	<u>rabi@vmkvec.edu.in</u>

												I) (redit		
17MI	ECC8	7			RING	LAB				CC	0	0		4	2	
Prear To i		trainir	ng in a	ssemb	ling ar	nd disr	nantlii	ng of c	liffere	nt types	of auto	omobile	e eng	gine of	compo	nents
Prere	equisit	e – NI	L													
Cours	se Ob	jective	e													
1		amiliar els of d				stude	nts on	the	constr	uctional	arrang	gement	s of	diff	erent	Engine
2		miliar ent ve			the s	tudent	s on t	the co	nstruct	tional a	rrangen	nents o	of di	iffere	nt Cha	ssis of
3	To le	earn th	e func	tion o	f Auto	motiv	e Elec	tronics	s com	ponents	of test	ing and	l me	asure	ments	
Cours	se Ou	tcome	s: On	the su	ccessf	ul con	npleti	on of 1	the co	urse, st	udents	will be	e abl	le to		
CO1.		Demonstrate by Dismantling and Assembling of the constructional arrangements of different Engine Models of different vehicles.														
CO2.		emonst rangen								of the les.	constr	ruction	al		Appl	7
CO3.		aluate d meas			on of A	Autom	otive I	Electro	onics	compor	ents by	y testin	g		Evalua	te
Mapp	oing w	vith Pr	ogran	nme O	utcon	nes an	d Pro	gram	me Sp	ecific O	utcom	es				
СО	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	, .	PS O1	PSO 2	PSO 3
CO1	S															
CO2	S	L	S	L	М	-	-	-	L	-		-		S	М	М
CO3	S	S S - L M L - S M M														
S- Sti	rong;	M-Me	dium;	L-Lo	W		1		1							

LIST OF EXPERIMENTS:

- 1) Dismantling & assembling of 6 cylinder petrol engine.
- 2) Dismantling & assembling of 4 cylinder petrol engine.
- 3) Dismantling & assembling of 3 cylinder diesel engine.
- 4) Gear box Sliding mesh, Constant mesh & Synchromesh Gear Box, Transfer case
- 5) Steering system, Braking system
- 6) Study of oil filter, fuel filter, fuel injection system, carburetor, MPFI
- 7) Study of ignition system components coil, magneto and electronic ignition systems.
- 8) Study of engine cooling system components, Study of engine lubrication system components
- 9) Ovality and taper measurement of cylinder bore and comparison with standard specifications
- 10) Clutch 2 types Coil spring& Diaphragm spring clutches

REFE	RENCES			
	1. Automobi	le engineering practic	ces R.P GUPTA.	
	2. Automobi	le engineering KIRP	AL SINGH	
S.No	Faculty Name	Designation	Department/ College	Email id
1	SAMUVEL MICHAEL	Asso.Prof Gr-II	MECH/AVIT	samuvelmichael@avit.ac.in
2	S RAJA	Asst Prof	MECH/VMKVEC	raja@vmkvec.edu.in

2 To a 3 Mai 4 To a	se provi site – N Dijectiv explain construc ke use o Constru examine	des the IL the bas ct the C of Cann ct the p e the to	sics of CNC pr ed Cy- program	know part p rogran cle, M m for a	ledge a	about (CNC 1	machir	CC ne and CN	C progr		4		2
This cours Prerequis Course O 1 To a 2 To a 3 Mal 4 To a	se provi site – N Dbjectiv explain construc ke use o Constru examine	IL e the bas ct the C f Cann ct the p e the to	sics of CNC pr ed Cy- program	part p rogran cle, M m for a	rogran n for a	nming		nachir	ne and CN	C progr	ammin	g		
Course O 1 Too 2 Too 3 Mal 4 Too	Objectiv explain construc ke use o Constru examine	e the bas ct the C of Cann ct the p e the to	CNC pr ed Cy program	rogran cle, M m for a	n for a	U	for tu							
1 To a 2 To a 3 Mal 4 To a	explain construc ke use o Constru examine	the bas ct the C f Cann ct the p e the to	CNC pr ed Cy program	rogran cle, M m for a	n for a	U	for tu							
2 To 0 3 Mal 4 To 0	construc ke use o Constru examine	ct the C of Cann ct the p e the to	CNC production of the program	rogran cle, M m for a	n for a	U	for tu							
3 Mal 4 To To	ke use o Constru examine	of Cann ct the p e the to	ed Cyo program	cle, M m for a		given	101 tu	rning a	and millin	g using	G & M	codes.		
4 To 4	Constru examine	ct the p e the to	orograi	m for a	irrorir	given	profil	e in m	illing.					
То	examine	e the to	-			ng and	subro	utines	for maching	ning a g	iven pr	ofile		
5 To 6			ol patł	•	a give	n profi	le in t	urning						
	outcome	6		n simu	lation	and g	enerati	ion of	codes usin	g Softw	/are			
Course O		es: On	the su	ccessf	ful cor	npleti	on of (the co	urse, stud	ents wi	ll be ab	ole to		
CO1.	To demo	onstrate	e the b	oasic k	nowle	edge al	oout G	and N	I codes			Und	erstand	
	Apply th								gram for li ing	near an	d	App	ly	
CO3. V	write the	e CNC	progra	ım			•		d subrouti		•	App	ly	
	Apply th facing, g								ycles inclu	ding tu	rning,	App	ly	
	Analyzo Softwa		ool pa	th sin	nulatio	on and	l gene	ration	of codes	using		Ana	lyze	
Mapping	with P	rogran	nme O	utcon	nes an	d Pro	gram	me Sp	ecific Out	comes				
$\begin{array}{c} \text{CO} & \begin{array}{c} \text{PC} \\ 1 \end{array} \end{array}$		PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO1 1	PO1 2	PSO 1	PSO 2	PSC 3
CO1 M	[L	L	-	-	-	-	-	-	-	-	L	М	-	
CO2 S	S	М	-	-	-	-	-	М	-	-	М	М	-	М
CO3 S	S	S	-	-	-	-	-	М	-	-	М	S	-	М
CO4 S	S	S	-	-	-	-	-	М	-	-	М	S	-	М
CO5 S	S	S	-	S	-	-	-	S	-	_	S	S	-	М
S- Strong	; M-Me	dium;	L-Lo	w										
SYLLAB		,												
LIST OF		RIME	NTS:											
Introduct	tion:													
1. St	tudy of	G and 1	M cod	es										

- 2. Manual Part Programming for CNC Machines using Standard G and M Code.
- 3. Machining practice on Trainer Type CNC Machines
- 4. Simulation of tool path using CAM simulation Software

Part programming for CNC Milling:

- 1. Point to point motions
- 2. Linear motions
- 3. Circular interpolations
- 4. Contour motions
- 5. Rectangular pocketing
- 6. Mirroring
- 7. Circular Pocketing
- 8. Fixed /canned cycles
- 9. Subroutines

Part programming for CNC Turning :

- 1. Turning and facing
- 2. Step turning and Taper Turning
- 3. Grooving
- 4. Fixed/Canned Cycles
- 5. Thread cutting Cycles
- 6. Peck Drilling Cycles

Text Books

1

CAM LAB Manual

S.No	Faculty Name	Designation	Department/ College	Email id
1	M.SARAVANAN	Asst. Professor	Mech / VMKVEC	msaravanan94@gmail.com
2	L.PRABHU	Assoc.Professor	Mech/ AVIT	prabhu@avit.ac.in

17MI	ECC89	н	ЕАТ	TRA	NSFF	ECC89 HEAT TRANSFER LAB Category L										redit
										CC	0	0		4		2
Mode	urpose s of he	at tra											ing	of dif	ferent	
Prere NIL	equisite	9														
	se Obj															
I	To imp										•			•		
/	To ena On app						eir cor	ducti	on me	chanis	m in u	nstead	ly s	tate en	nphasi	zing
3	To mal	ke st	udent	s unde	erstan	d con	vectio	n prir	nciples	s and it	s appli	catior	1.			
4	To pro	vide	radia	tion c	oncep	ots and	l Heat	exch	anger	s.						
5	To ena	ble s	studer	nts to u	unders	stand	Stefar	n Bolt	zmanı	n's con	stant c	oncep	ots.			
Cour	se Out	com	es: O	n the	succe	essful	comp	letior	n of tl	ne cour	se, stu	dents	s wi	ll be a	ble to	
CO1.			ent w nents.	ith co	nducti	ion sy	stems	for g	iven s	et of			Ap	ply		
CO2.	Conc	luct	exper	iment	s base	d on t	ransie	ent con	nducti	on sys	ems.		Ap	ply		
CO3.			ng the uirem	-	rimer	nts for	conv	ection	syste	ems bas	ed on	the	Ap	ply		
CO4.			rm the	-	rimen	nts wit	th Rac	liatior	n Heat	Excha	ingers	for	Ap	ply		
CO5.	To e	xper	iment	with	Stefar	n Bolt	zmanı	n's se	tup fo	r giver	condi	tions	Ap	ply		
Марр	oing wi	ith P	rogra	amme	Outo	comes	and	Prog	ramm	e Spec	ific O	utcon	ies			
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	2	PSO1	PSO2	PSO
CO1	S	М	L	М	L	-	-	-	-	-	-	_	Ī	S	_	-
CO2	М	Μ	L	М	L	_	_	_	-	-	-	_		S	-	_
CO3	М	Μ	L	М	L	-	-	-	-	-	-	-		S	-	_
CO4	М	М	L	М	L	_	_	_	-	-	-			S	-	-
CO5	М	Μ	L	М	L	_	_	-	-	_	_	_		S	_	-
	ong; M-		I	L	I	L	1	1	I	1					I	I

LIST OF EXPERIMENTS

- 1.Determination of Thermal conductivity(Lagged Pipe)
- 2.Determination of Emissivity

3.Determination of Heat transfer co-efficient through Forced Convection

4.Determination of Heat transfer co-efficient through Natural Convection

5. Determination of Heat transfer co-efficient of Pin-Fin Apparatus.

6.Determination of Stefan Boltzmann' s Constant

7.Determination of Thermal conductivity(Two Slabs Guarded Hot Plate Method)

8.Determination of Effectiveness of a Heat Exchanger By Parallel Flow

9.Determination of Effectiveness of a Heat Exchanger By Counter Flow

10.Determination of Thermal conductivity of the Composite wall

11.Determination of Thermal conductivity (Insulating Powder)

TEXT BOOKS

1. Heat Transfer lab Manual , Prepared by C.Thiagarajan, Mech/AVIT

S.No	Faculty Name	Designation	Department/ Name of the	Email id								
			College									
1	C.THIAGARAJAN	ASSIOCIATE PROFESSOR	Mechanical/AVIT	cthiagarajan@avit.ac.in								
2	Dr.V.K.KRISHNAN	ASSOCIATE PROFESSOR	Mechanical/VMKV EC	krishnan@vmkvec.edu.in								

171/1	ECC90		FIN	ITE	ELE	MEN'	Т	Ca	ategor	y	L	Т	Р	Cre	edit
1/1/1			Α	NAL	YSIS	LAB			CC		0	0	4		2
Pream To pro	b le vide han	ds-or	n exp	erienc	e to t	he stu	dents	in fin	ite ele	ment	analysi	s softwa	ire.		
Prereq Streng	luisite th of Ma	terial	s Lat).											
Cours	e Object	tive													
1 I	earn bas	sic pr	ocedu	ure of	finite	elem	ent ar	nalysis	5						
2 N	/lake Us	e of c	ompi	iter as	s a too	ol in a	nalysi	is							
3 A	Analysis	of mo	odele	d part	S										
4 A	Analysis	of on	e and	l two-	dimer	nsiona	ıl prol	olems	using	softw	are				
5 T	o model	l mult	i-din	nensio	onal h	eat tra	nsfer	probl	ems u	sing A	NSYS				
Course	e Outco	mes:	On t	he su	ccessf	ful co	mplet	tion o	f the c	course	, stude	ents will	be abl	le to	
CO1.	Illustra	ate the	e bas	ic con	cepts	and p	orocec	lure of	f finite	elem	ent ana	lysis	U	ndersta	nd
CO2.	Solve	the fir	nite e	lemer	nt pro	blems	to tru	usses,	beams	s and f	rames			Apply	
CO3.	Apply member					d to fi	nd so	lution	s for v	various	s machi	ine		Apply	
CO4.	Apply	finite	e elen	nent n	netho	d to so	olve H	Ieat tr	ansfer	probl	ems.			Apply	
CO5.	Solve	linear	, non	linea	r and	Harm	nonic	analy	sis pro	blems				Apply	
Mappi	ing with	Prog	gram	me O	utcor	nes ai	nd Pr	ograr	nme S	Specifi	ic Outo	comes			
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	L	L	L	-	-	-	-	-		L	-	-
CO2	s	S	М	L	S	М	-	-	-	L	-		М	-	L
CO3	S	S	S	S	S	М	-	-	М	L	-		S	-	S
CO4	S	S	S	М	S	М	-	-	М	L	-		S	-	S
CO5	S	S	S	S	S	L	-	-	-	L	-		S	-	М
S- Stroi	ng; M-Me	dium:	L-La	W			I	I	<u> </u>		1	L	1	1	<u> </u>

- 1. Study of analysis and its benefits
- 2. Stress analysis of cantilever and simply supported beam
- 3. Application of distributed loads
- 4. Nonlinear analysis of cantilever beam
- 5. Buckling analysis
- 6. Stress analysis of axi-symmetry vessels
- 7. Static analysis of two dimensional truss
- 8. Transient thermal conduction
- 9. Conductive heat transfer analysis
- 10. Plane stress bracket
- 11. Modal analysis of simply supported beam
- 12. Harmonic analysis of a cantilever beam

Text Books

1	Finite Element Analysis lab Manual-Faculty of Engineering and Technology, VMRF-DU
---	---

Reference Books

- **1** Hutton, D.V., "Fundamentals of Finite Element Analysis", McGraw Hill, International Edition, 2004.
- 2 Chandrupatla, T.R., Belegundu, A.D., "Introduction to Finite Elements in Engineering", Prentice Hall of India, 2002.

S.No.	Faculty Name	Designation	Department/Name of the College	Email id
1	K.Vijayakumar	Assistant Professor	Mech / AVIT	<u>vijayakumar@avit.ac.in</u>
2	J.Santhosh	Asst.Prof.	Mech/VMKVEC	santhosh@vmkvec.edu.in

17ME	0 ^	1			STRI			Cate	egory	L		Т	Р	Cr	edit		
1/1/11		•	AUT	OMA	TIO	N LAE	3	C	C	0		0	4 2				
device	his co s			o teacl	n the	hydrau	ilic a	nd pn	euma	tic circ	uit des	ign us	sing diffe	erent co	ontrol		
Prerec	quisite	e NIL	4														
Cours	e Obj	ective)														
1 7	Fo kno	ow Hy	drauli	c and	Pneu	matic o	circu	its									
2 7	Го trai	n desi	gn an	d testi	ing of	f logica	al pn	eumat	ic cir	cuits							
	Fo trai	n desi	gn of	electr	o pne	umatic	circ	uits									
5			-		_	eumat											
	0.4				-	e 1			6.41				••••				
Cours												ents	will be a				
CO1.	auto	mation	-	Î				-		dustria	l		Underst	and			
CO2.				•••		or an au							Apply				
CO3.				-			-		-	matic ₁	-	les	Apply				
CO4.	Deve	elop PI	LC bas	sed pn	eumati	ic circu	it for	seque	ncing	operatio	ons		Apply				
Mapp	ing w	ith Pr	ogran	nme	Outco	mes a	nd P	rogra	mme	Specif	fic Out	tcome	es	1			
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	S	S															
CO2	S	S	S	L	М				L				L		M		
CO3	S	М	М	L	L								L		L		
CO4	S	М	М	L	L								L		L		
S- Stro	ng; M-	Mediu	m; L-I	.0W		<u> </u>											
LIST																	
	U	-				s for d			•••	inder. cylinde	.r.						
	-				-	ylindei			ung	c y mut	.						
	-	-	-	-		trappe			2 gro	ups							
	-			-		s: ANI		-	8-9-	r							
-				-					inuou	s recip	rocatio	on of c	ylinder	(with ti	mer		
	unter)									1			-				

7. Design and testing of Force, Velocity calculations in Hydraulic Linear actuation

8. Design and simulation of PLC Control Pneumatic/ Hydraulic linear actuator circuits.

9. To	o design a PLC Controller based sequencing circuits												
Text I	Books												
1	Industrial Automation Lab Department Manual												
Refere	ence Books												
1	Anthony "Esposito, Fluid Power with applications", Prentice Hall international–1997.												
2	Majumdar.S.R, "Oil Hydraulics", Tata McGraw Hill, 2002.												
3	Majumdar S.R, "P 1995.	neumatic system	ms-principles and ma	intenance", Tata McGraw Hill									
4	Bolton, W., 2003. engineering. Pears		electronic control sys	tems in mechanical and electrical									
Cours	se Designers												
S.No	Denartment/Na												
1	M.SARAVANAN	ASST. PROF	MECH./ AVIT	saravanan@avit.ac.in									
2	Dr. S.NATARAJAN	ASSO.PROF	MECH / VMKVEC	natarajans@vmkvec.edu.in									

181		70.4]	MAN	UFA	CTUF	RING		C	ategor	y I	L T	Р	Cr	edit
17M	IECO	294	I	ENGI	NEEI	RING	LAB	•		CC	() 0	4		2
	npart		U										stries. T ne tools	o incre s.	ase
Prere	equis	ite – Nl	L			•				•					
Cour	se O	ojective	9												
1	To study the working principle and understand the basic operations in the lathe machine and various machine tools														
2	To apply the knowledge and practical training in drilling machine, shaping machine operations														
3		pply th nines	e knov	vledge	and th	ne prac	ctical t	rainin	g by u	sing mi	lling, pl	anning	and gri	nding	
Cour	se O	ıtcome	s: On	the su	ccessf	ul con	npleti	on of t	the co	urse, st	udents	will be	able to		
CO1.	Explain the basic operations in lathe and Special Machine Understand														
CO2.	A	pply th	e vario	ous op	eration	ns in E	Drilling	g and s	shapin	g mach	ines.			Apply	7
CO3.		pply thachine		ous op	eratio	ns in u	sing n	nilling	, planı	ning and	l grindi	ng		Apply	7
Map	ping	with Pr	ogran	nme O	utcon	nes an	d Pro	gram	me Sp	ecific O	outcom	es			
CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	S	-	-	-	L	-	-	-	М	-	-	-	-	_	-
CO2	S	М	-	_	L	_	_	-	М	-	-	_	S	-	-
CO3	S	М	-	-	L	-	I	-	М	-	-	-	S	-	-
CO4	4 S M L M S														
S- Sti	rong	M-Me	dium;	L-Lo	W										
SYLI	LAB	US:													
LIST	' OF	EXPEI	RIME	NTS:											

- Plain turning and step turning on lathe.
 Taper turning on lathe.
 Thread cutting on lathe.

- Drilling, reaming and tapping in a drilling machine.
 Plain milling.

- 6. Making square shape job in shaping machine.
 7. Making Cutting key ways in a slotting machine.
 8. To Perform Grinding process using a grinding machine

Text Book

MANUFACTURING ENGINEERING LAB - MANUAL

S.No	Faculty Name	Designation	Departmen t/ College	Email id
1	S. ARUNKUMAR	Assistant Professor	MECH /VMKVEC	arunkumar@vmkvec.edu.in
2	S.PRAKASH	Assistant Professor	MECH/AVI T	prakash@avit.ac.in

ELECTIVE COURSES-PROGRAMME SPECIFIC

AUTOMOTIVE POLLUTION Category L T P 17ATCC10 CONTROL Category L T P										С					
17A1	ICCIO			C	ONTR	OL			EC - \$	SE	3	0	0	3	
Pream	ble														
To study	and pu	ırpose	is to ur	Iderstar	nd auto	motive	polluti	on cont	rol.						
Prerequ	iisite														
	NIL														
Course Objectives															
	To und				-										
							SI engin								
							CI engi	nes							
	To imp														
5 To understand the measurement technique and emission standards.															
	Course Outcomes: After Successful completion of this course, the students will be able to:														
After Su	ccessfu	l com	oletion	of this	course,	the stu	dents w	vill be a	able to:						
CO1	. Sum	marize	the cur	rent sc	enario	of Auto	mobile	Emiss	ions an	d stand	ards			U	nderstand
CO2	. Appl	y the f	ormatio	on of E	mission	s from	SI Eng	ines.							Apply
CO3	. Appl	y the f	ormatio	on of E	mission	s from	CI Eng	gines.							Apply
CO4	. Exan	nine Eı	nission	and co	ontrol T	echniq	ues in S	SI and G	CI Engi	nes.					Analyze
CO5	. Inspe	ect mea	suring	technic	ues of	Emissi	on and	test pro	ocedure	;					Analyze
		Μ	lapping	g with I	Progra	mme ()utcom	es and	Progr	amme	Specifi	ic Outc	omes		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSC	2 PSO3
CO1	S	М	М	М								М	М		
CO2	S	S	S	S	М							М	М		
CO3	S	S	S	S	М							S	М		
CO4	S	S	S	S	М							S	М		
CO5	S	S	S	S	М							S	М		

S- Strong; M-Medium; L-Low

Syllabus

INTRODUCTION

Introduction pollution control act- norms and standards. Vehicle population assessment in metropolitan cities and contribution to pollution, effects on human health and environment, global warming, types of emission, transient operational effects on pollution

POLLUTANT FORMATION IN SI ENGINES

Pollutant formation in SI Engines, mechanism of HC and CO formation in four stroke and two stroke SI engines, NOx formation in SI engines, effects of design and operating variables on emission formation, control of evaporative emission. Two stroke engine pollution

POLLUTANT FORMATION IN CI ENGINES

Pollutant formation in CI engines, smoke and particulate emissions in CI engines, effects of design and operating variables on CI engine emissions. Nox and Sox formation and control. Noise pollution from automobiles, measurement and standards.

CONTROL OF EMISSIONS FROM SI AND CI ENGINES

Design of engine, optimum selection of operating variables for control of emissions, EGR, Thermal reactors, secondary air injection, catalytic converters, catalysts, fuel modifications, fuel cells, Two stroke engine pollution control.

MEASUREMENT TECHNIQUES - EMISSION STANDARDS

NDIR, FID, Chemiluminescent analyzers, Gas Chromatograph, smoke meters, emission standards, driving cycles – USA, Japan, Euro and India. Test procedures – ECE, FTP Tests. SHED Test – chassis dynamometers, dilution tunnels

TEXT BOOK:

1. Paul Degobert – Automobiles and Pollution – SAE International ISBN-1-56091-563-3, 1991.

2. Ganesan, V- "Internal Combustion Engines"- Tata McGraw-Hill Co.- 2013.

3. SAE Transactions- "Vehicle Emission"- 1982 (3 volumes).

REFERENCES:

1. Obert.E.F.- "Internal Combustion Engines"- 1988.

2. Marco Nute- "Emissions from two stroke engines, SAE Publication – 1998

_					
S.	S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	1	T.Raja	Associate Professor	Auto / VMKVEC	rajat@vmkvec.edu.in
2	2	R. Prabhakar	Associate Professor	Auto / VMKVEC	prabhakar@vmkvec.edu.in
~	3	M.Saravana Kumar	Assistant. Professor GRII	Auto / AVIT	saravanakumar@avit.ac.in
4	1	N. Shivakumar	Assistant. Professor GRII	Auto / AVIT	shivakumar@avit.ac.in

17MESE04	RENEWABLE SOURCE OF ENERGY	Category	L	Т	Р	Credit
	OF ENERGY	EC(SE)	3	0	0	3

Preamble

Renewable source of energy are developing fast throughout the world, and their combination is increasingly able to meet the needs for available, agreeable, and affordable energy, also for the people that lack access to energy today. In addition, local energy resources are not hit by the high energy price increases that are threatening to reverse the progress in providing energy to the poor people that lack appropriate energy today. This is why sustainable energy, the combination of renewable energy and energy efficiency, is increasingly become a part of the efforts to reduce poverty.

Prere	Prerequisite – NIL															
Cour	Course Objective															
1	1 To understand the importance of solar energy.															
2	To lear	Fo learn the importance of wind energy.														
3	To kno	o know the importance of bio energy.														
4	To kno	o know various renewable energy power plants.														
5	To lear	o learn the necessity of latest and modern energy sources.														
Cour	se Outc	e Outcomes: On the successful completion of the course, students will be able to														
C01.	. Study the importance and Economics of renewable Energy Remember															
CO2.	Disc	Discuss the method of power generation from Solar Energy Understand														
CO3.	Disc	uss the	e meth	od of J	power	genera	ation f	rom W	/ind E	nergy		ι	Jndersta	ind		
CO4.	Exp	lain the	e meth	od of j	power	genera	ation f	rom B	io Ene	ergy		τ	Jndersta	ind		
CO5.	_	lain tł therma								C, Hydi	ro ener	rgy, I	Jndersta	Ind		
Map	oing wit	th Prog	gramn	ne Ou	tcome	s and	Prog	ramm	e Spec	ific Ou	tcomes	5				
СО	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PS O3	
C01	М	М	М	-	-	-	-	-	-	-	-	-	S	М	L	
CO2	S	М	М	-	-	-	-	-	-	-	-	-	S	М	L	
CO3	S	М	М	-	-	-	-	-	-	-	-	-	S	М	L	
CO4	S	М	М	М	-	-	-	-	-	-	-	-	S	М	L	

	CO5	S	М	М	М	-	-	-	-	-	-	-	-	S	М	L	I
l									1								

S- Strong; M-Medium; L-Low

SYLLABUS

SOLAR ENERGY

Solar Radiation – Measurements of solar Radiation – Solar Thermal Collectors – Flat Plate and Concentrating Collectors – Solar Applications – fundamentals of photo Voltaic Conversion – solar Cells – PV Systems – PV Applications

WIND ENERGY

Wind Data and Energy Estimation – wind Energy Conversion Systems – Wind Energy-Generators and its performance – Wind Energy Storage – Applications – Hybrid systems

BIO – ENERGY

Biomass, Biogas, Source, Composition, Technology for utilization – Biomass direct

Combustion - Biomass gasifier - Biogas plant - Digesters - Ethanol production - Bio

Diesel production and economics.

OTEC, TIDAL, GEOTHERMAL AND HYDEL ENERGY

Tidal energy – Wave energy –Open and closed OTEC Cycles – Small hydro plant turbines – Geothermal energy sources- environmental issues.

NEW ENERGY SOURCES

Hydrogen generation, storage, transport and utilization, Applications - power generation- transport – Fuel cells – technologies, types – economics and the power generation

Text Books

1	G.D. Rai, "Non-Conventional Energy Sources", Khanna Publishers, New Delhi, 1999.
2	S.P. Sukhatme, "Solar Energy", Tata McGraw Hill Publishing Company Ltd., New Delhi, 1997.
Refere	nce Books
1	Godfrey Boyle, "Renewable Energy, Power for a Sustainable Future", OxfordUniversityPress, U.K., 1996
2	Twidell, J.W. & Weir, A., "Renewable Energy Sources", EFN Spon Ltd., UK, 1986
3	G.N. Tiwari, "Solar Energy Fundamentals Design, Modelling and applications", Narosa Publishing House, New Delhi, 2002
4	L.L. Freris, "Wind Energy Conversion systems", Prentice Hall, UK, 1990

Cours	Course Designers												
S.No	Faculty Name	Designation	Department/Name of the College	Email id									
1	Dr. V.K.Krishnan	Asst. Prof	MECH / VMKVEC	krishnan@vmkvec.edu.in									
2	A.IMTHIYAS	Asst. Prof	MECH / VMKVEC	imthiyas@avit.ac.in									

17MESE05	WASTE ENERGY CONVERSION	Category	L	Т	Р	Credit
	TECHNOLONGY	EC(SE)	3	0	0	3

Preamble

This subject deals with various techniques involved in waste treatment, waste disposal and how to convert energy from that waste. Detailed study extends to the method of thermo chemical and bio chemical conversion techniques. Also deals a case study of environmental and health impact due to energy conversion fromwaste.

Prerequisite - NIL

Course Objective

o und o app o app o ana	erstand ly the o ly the o	conver	e treat	ment a	and dis	posal.										
o app o app o anal	ly the o	conver				•										
To app	ly the o		t wast	e to er	perav f	-	Γο understand waste treatment and disposal.									
o anal		conver		Γο apply the convert waste to energy from thermo chemical conversion.												
	vsis th		t wast	e to er	nergy f	rom b	io che	mical	convers	ion.						
Oute	y 515 th	To analysis the environmental impact due to waste with case study.														
Out	omes:	On th	e suce	cessfu	l comp	oletior	n of th	e cour	rse, stud	lents w	ill be	able to				
Knov	Known thetypes and source of waste understand															
Familiarize the various waste treatment technique and disposal methods. understand																
Apply the various techniques to convert waste to energy by thermo apply chemical conversion. apply																
Apply various methods to convert waste to energy from bio chemical apply conversion. apply																
	•	e envii	onme	ntal ar	nd heal	lth imp	pacts d	lue to	waste w	vith case	e	analyze				
ng wit	h Prog	gramn	ne Ou	tcome	es and	Prog	ramm	e Spec	cific Ou	tcomes	I					
PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3		
М	М	L	L	-	-	-	-	-	-	-	-	L	-	-		
S	S	М	М	-	-	-	-	-	-	-	-	L	-	-		
S	S	М	М	-	-	-	-	-	-	-	-	L	-	-		
S	S	М	L	-	-	-	-	-	-	-	-	L	-	-		
S	S	S	М	-	-	М	-	-	-	-	-	L	-	-		
	Fami Appl chen Appl conv Anal study ng wit PO1 M S S S	FamiliarizeApply the vectorApply variationApply variationAnalyze thstudy.ng with ProgramPO1PO 2MMSSSSSSSS	Familiarize the valueFamiliarize the valueApply the various conversion.Apply various me conversion.Analyze the envir study.me with ProgrammPO1PO 2PO1PO 2PO 3MMLSSMSSMSSM	Familiarize the various Apply the various techn Apply various methods conversion. Analyze the environme study. PO1 PO PO1 PO 2 3 4 M M S S S M S M S M S M S M S M	Familiarize the various wasteApply the various techniques chemical conversion.Apply various methods to cor conversion.Analyze the environmental ar study.ng with Programme OutcomePO1PO 2PO 3PO 4PO1PO 2PO 3PO 4SSM MM -SSM MLSSM ML	Familiarize the various waste treatmApply the various techniques to conchemical conversion.Apply various methods to convert w conversion.Analyze the environmental and heat study.Amalyze the environmental and heat study.PO1PO 2PO 3PO 4PO 5PO1PO 2PO 3PO 4PO 5MMLL-SSMM-SSML-SSML-	Familiarize the various waste treatment teApply the various techniques to convert w chemical conversion.Apply various methods to convert waste t conversion.Analyze the environmental and health imp study.PO1PO 2PO 3PO 4PO 	Familiarize the various waste treatment techniqueApply the various techniques to convert waste to chemical conversion.Apply various methods to convert waste to energic conversion.Analyze the environmental and health impacts d study.PO1PO 2PO 3PO 4PO 5PO 6PO 7PO 8PO1PO 2PO 3PO 4PO 5PO 6PO 7PO 8MMLLSSM MMSSM ML	Familiarize the various waste treatment technique andApply the various techniques to convert waste to energy chemical conversion.Apply various methods to convert waste to energy from conversion.Analyze the environmental and health impacts due to restudy.ng with Programme Outcomes and Programme SpectPO1PO 2PO 3PO 4PO 5PO 6PO 7PO 8PO 9MMLLSSMMSSMLSSML	Familiarize the various waste treatment technique and disposate Apply the various techniques to convert waste to energy by the chemical conversion. Apply various methods to convert waste to energy from bio chemical conversion. Analyze the environmental and health impacts due to waste with the environmental and health impacts due to thealthealthealthealthealthealthealtheal	Familiarize the various waste treatment technique and disposal methodApply the various techniques to convert waste to energy by thermo chemical conversion.Apply various methods to convert waste to energy from bio chemical conversion.Analyze the environmental and health impacts due to waste with case study.PO PO PO PO PO PO PO PO PO PO PO1 2 3 4 5 6 7 8 9 0 1PO1PO 2 3 4 5 6 7 8 9 0 1MMLLSSMML-SSMML-SSMLL-SSMLL-SSMLL-SSMLL-SSMLL-SSMLL-SSMLL-L <td>Familiarize the various waste treatment technique and disposal methods. Apply the various techniques to convert waste to energy by thermo chemical conversion. Apply various methods to convert waste to energy from bio chemical conversion. Analyze the environmental and health impacts due to waste with case study. Apply PO PO1 PO <t< td=""><td>Analyze the various waste treatment technique and disposal methods. understa Apply the various techniques to convert waste to energy by thermo chemical conversion. apply apply Apply various methods to convert waste to energy from bio chemical conversion. apply Analyze the environmental and health impacts due to waste with case study. analyze PO1 PO PO</td><td>Familiarize the various waste treatment technique and disposal methods. understand Apply the various techniques to convert waste to energy by thermo chemical conversion. apply apply Apply various methods to convert waste to energy from bio chemical conversion. apply Analyze the environmental and health impacts due to waste with case study. analyze PO1 PO PO</td></t<></td>	Familiarize the various waste treatment technique and disposal methods. Apply the various techniques to convert waste to energy by thermo chemical conversion. Apply various methods to convert waste to energy from bio chemical conversion. Analyze the environmental and health impacts due to waste with case study. Apply PO PO1 PO PO <t< td=""><td>Analyze the various waste treatment technique and disposal methods. understa Apply the various techniques to convert waste to energy by thermo chemical conversion. apply apply Apply various methods to convert waste to energy from bio chemical conversion. apply Analyze the environmental and health impacts due to waste with case study. analyze PO1 PO PO</td><td>Familiarize the various waste treatment technique and disposal methods. understand Apply the various techniques to convert waste to energy by thermo chemical conversion. apply apply Apply various methods to convert waste to energy from bio chemical conversion. apply Analyze the environmental and health impacts due to waste with case study. analyze PO1 PO PO</td></t<>	Analyze the various waste treatment technique and disposal methods. understa Apply the various techniques to convert waste to energy by thermo chemical conversion. apply apply Apply various methods to convert waste to energy from bio chemical conversion. apply Analyze the environmental and health impacts due to waste with case study. analyze PO1 PO PO	Familiarize the various waste treatment technique and disposal methods. understand Apply the various techniques to convert waste to energy by thermo chemical conversion. apply apply Apply various methods to convert waste to energy from bio chemical conversion. apply Analyze the environmental and health impacts due to waste with case study. analyze PO1 PO PO		

INTRODUCTION TO WASTE & WASTE PROCESSING

Definitions, sources, types and composition of various types of wastes; Characterisation of Municipal SolidWaste (MSW), Industrial waste and Biomedical Waste (BMW), waste collection and transportation; waste processing-size reduction, separation; waste management hierarchy, waste minimization and recycling of MSW; Life Cycle Analysis (LCA), Material Recovery Facilities (MRF), recycling processes of solid waste.

WASTE TREATMENT AND DISPOSAL

Aerobic composting, incineration, different type of incineration; medical and pharmaceutical waste incinerations- land fill classification, types, methods and sitting consideration, layout and preliminary design of landfills: composition, characteristics, generation, movement and control of landfill leachate and gases, environmental monitoring system for land fill gases.

ENERGY FROM WASTE-THERMO CHEMICAL CONVERSION

Sources of energy generation, incineration, pyrolysis, gasification of waste using gasifiers, briquetting, utilization and advantages of briquetting,-environmental and health impacts of incineration; strategies for reducing environmental impacts.

ENERGY FROM WASTE- BIO-CHEMICAL CONVERSION

Anaerobic digestion of sewage and municipal wastes, direct combustion of MSW-refuse derived solid fuel, industrial waste, agro residues, anaerobic digestion- biogas production, land fill gas generation and utilization, present status of technologies for conversion of waste into energy, design of waste to energy plants for cities, small townships and villages.

ENVIRONMENTAL AND HEALTH IMPACTS-CASE STUDIES

Environmental and healthimpacts of waste to energy conversion, case studies of commercial waste to energy plants, waste to energy-potentials and constraints in India, eco-technological alternatives for waste to energy conversions - Rules related to the handling, treatment and disposal of MSW and BMW in India.

Text Books

1	Parker, Colin, & Roberts, "Energy from Waste An Evaluation of Conversion Technologies",
	Elsevier Applied Science, London, 1985.
2	Shah, Kanti L., "Basics of Solid & Hazardous Waste Management Technology", Prentice Hall,
	2000.

Reference Books

1	Robert Green, From Waste to Energy, Cherry LakePublication, 2009.
2	Velma I Grover and Vaneeta Grover, "Recovering Energy from Waste Various Aspects", Science Pub Inc. 2002

S.No	Faculty Name	Designation	Department/Name of the College	Email id	
1	R.CHANDRASEKAR	Assistant	MECH / VMKVEC	chandrasekar@vmkvec.edu.in	
1	K.CHANDRASERAR	Professor			
2	R.MAHESH	Assistant	MECH / AVIT	mahesh@avit.ac.in	
2	Κ.ΙΨΙΑΠΕΘΠ	Professor			

17MESE07	NUCLEARPOWER ENGINEERING	Category	L	Т	Р	Credit
	ENGINEERING	EC(SE)	3	0	0	3

Preamble

Nuclearengineeringis thebranchof sciencethatdealswiththeoryofnuclearfissionandfusion,nuclear reactorsand preventive maintenance such as protection from radiation. In order to understand the constructionandoperationofnuclearreactors,itisnecessarytohaveabasicgroundinginatomicphysics. The course provides afundamental knowledge in nuclear power generation and nuclear power plant operation and their applications.

Prere	quisite	-NIL													
Cours	seObje														
1	Tound	erstand	themec	chanisı	nsofnu	clearf	issiona	undfusi	onreac	ctions.					
2	Tounderstand importance of reactor materialsanditscharacteristics.														
3	Tounderstand application of reprocessing methods of nuclear spentfuel.														
4	Toanalysis the performance of separation of reactor products														
5	Tolear	n the ap	plicati	on of v	vaste d	isposa	ıl and ı	adiati	on proc	duction					
Cours	seOutco	omes:C	Onthes	uccess	fulcon	npleti	onofth	ecours	se,stud	entswil	lbeable	eto			
CO1.	То и	indersta	and the	nuclea	arfissio	nandf	usionp	rocess	es.				Understa	and	
CO2.	To learn and understandthevariousnuclearfuelcyclesanditscharacteristics. understand														
CO3.	To ap	oply the	variou	is repr	ocessii	ngmet	hodsof	nuclea	rspent	fuel.			Apply		
CO4.	To learn the applications of disposal methods of nuclear Apply Wastes and radiation production. Apply														
CO5.	To a	malysis	the co	ncept	and pe	rform	ance of	f these	paratio	nofreac	torprod	ucts.	Analyze		
Mapp	oingwit	hProgr	amme	Outco	omesar	ndPro	gramn	neSpe	cificO	utcome	8				
CO	PO1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	I PSO 1	PSO 2	PSO 3
CO1	S	М	Μ	Μ	Μ								М		
CO2	S	М	М	L	S								М		
CO3	S	М	Μ	L	S								М		
CO4	S	М	Μ	S	М								S		
CO5	S	М	Μ	S	М								М		
S-Str	ong;M-	Mediu	m;L-L	20W											

NUCLEARREACTORS

Me chanism of nuclear fission-Nuclides-Radioactivity-Decay chains-Neutron reactions-Fission process -Reactors-Types of reactors-Design and construction of nuclear reactors-Heattransfertechniques in nuclear reactors-Reactors hielding.

REACTORMATERIALS

Nuclearfuelcycles-Characteristicsofnuclearfuels-Uranium-Productionandpurificationofuranium-ConversiontoUF4andUF6-OtherfuelslikeZirconium,Thorium,Berylium.

REPROCESSING

Nuclear fuel cycles-Spent fuel characteristics-Role of solvent extraction in reprocessing-Solvent extraction equipment

SEPARATIONOFREACTORPRODUCTS

Processestobeconsidered-Fuelelementdissolution-Precipitationprocess–Ionexchange-Redox-Purex -TTA–Chelation-U235-Hexone-TBPandThoraxprocesses-Oxidativeslaggingandelectro-refining-Isotopes– Principlesofisotopeseparation

WASTEDISPOSALANDRADIATIONPROTECTION

Types of nuclear was tes-Safety control and pollution control and a batement-International convention on safety as pects-Radiation hazard sprevention

TextBooks

1	ThomasJ.Cannoly, "FundamentalsofnuclearEngineering", JohnWisley, 2002
2	CollierJ.G.,andHewittG.F,"IntroductiontoNuclearpower",Hemispherepublishing, NewYork, 2002.

ReferenceBooks

1	A.E.WalterandA.B.Reynolds(1981),FastBreederReactor,PergamonPress.
2	M.M.El-Wakil (1971), Nuclear Energy Conversion, Intext Educational Publish.
0	

S.No	FacultyName	Designation	Department/Name oftheCollege	Emailid
1	Dr.V.K.Krishanan	Asso.Prof	Mech / VMKVEC	vkkrishnan@vmkvec.edu.in
2	R.MAHESH	Asst. Prof	Mech / AVIT	mahesh@avit.ac.in

17M	ESE12	, 1	PROD	UCT	LIFE	CYCL	Æ	Cate	egory	L		Т	Р	Cr	edit
1 / 191	LSE12		Μ	IANAGEME		ENT	NT		(PS)	3		0	0		3
Pream To ena		stude	nts to ı	unders	tand tl	ne vario	ous pr	oduct	life m	anagem	ent too	ls & P	LM conc	cepts	
Prerec	quisite	NIL													
Cours	e Obje	ctive													
1	To Exp	olain tl	he proo	duct li	fe cyc	le mana	igeme	ent of a	a prod	uct					
2	To und	erstand	d the p	rocess	flow,	work f	low,	& proc	duct da	ata man	agemer	nt			
3	То Арр	oly the	conce	pts of	new p	roduct	devel	opmer	nt						
4	То Мо	dify th	e conc	epts o	fnew	product	t deve	elopme	ent						
5	Produc	t life c	ycle m	anage	ment s	strategy	and	PLM a	assessi	ment.					
Cours	e Outc	omes:	On th	e suce	cessfu	l comp	letior	n of th	e cour	se, stu	dents w	vill be	able to		
CO1.	Expl	ain the	e conce	epts of	produ	ict data	, info	rmatic	on, stru	ictures	and PL	M.	Understa	and	
cor	Desc	cribe th	ne bene	efits of	f PLM	impler	nenta	tion in	ı daily	operati	ons,		Understa	and	
CO2.	mate	erial co	sts, pr	oducti	vity of	f labor a	and q	uality	costs.						
Co3.	Perf	orm PI	LM Co	oncepts	s For S	Service	Indus	stry Ai	nd E-E	Business			Apply		
CO4.	Dete	rmine	the Us	se of	tools a	and star	ndards	s in PI	LM.				Apply		
CO5.						ganizati 1g, and				ding pr	oductio	n,	Apply		
Mapp	ing wit	th Prog	gramr	ne Ou	tcome	es and l	Prog	ramm	e Spec	cific Ou	tcomes	5			
СО	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	S												М		
CO2	S	М	S	S						S			М		
CO3	S	S	L												
CO4	S	М	L												
CO5	S	S	M	L								L	М		
S- Str	ong; M	I-Medi	ium; I	L-Low	,	<u>ı </u>		<u>I</u>	L	<u> </u>	I	L		<u>I</u>	<u>ı</u>

INTRODUCTION TO PRODUCT LIFE CYCLE MANAGEMENT

Definition - PLM Lifecycle model - Threads of PLM - Need for PLM - Opportunities and benefits of PLM - Views - Components and Phases of PLM - PLM feasibility study - PLM visioning - Characteristics of PLM - Environment driving PLM - PLM Elements - Drivers of PLM - Conceptualization - Design - Development - Validation - Production - Support of PLM

PRODUCT DATA MANAGEMENT (PDM) PROCESS AND WORKFLOW

Engineering vaulting - product reuse - smart parts - engineering change management - Bill of materials and process consistency - Digital mock-up and prototype development - design for environment - virtual testing and validation - marketing collateral.

COLLABORATIVE PRODUCT DEVELOPMENT

Steady one-dimensional convection and diffusion – Central, upwind differencing schemes properties of discretization schemes – Conservativeness, Boundedness, Transportiveness, Hybrid, Power-law, QUICK Schemes.

DIGITAL MANUFACTURING – PLM

Digital manufacturing - benefits manufacturing - Manufacturing the first-one - Ramp up - virtual learning curve - manufacturing the rest - production planning.

DEVELOPING A PLM STRATEGY AND CONDUCTING A PLM ASSESSMENT

Strategy - Impact of strategy - implementing a PLM strategy - PLM initiatives to support corporate objectives - Infrastructure assessment - assessment of current systems and applications.

Text Books

1	Stark, John. Product Lifecycle Management: Paradigm for 21st Century Product Realisation, Springer-Verlag, 2004.

2 Product Lifecycle Management, Michael Grieves, Tata McGraw Hill 2012

Reference Books

1Fabio Giudice, Guido La Rosa, Product Design for the environment-A life cycle approach, Taylor
& Francis 2006

S.No	Faculty Name	Designation	Department/Name of the College	Email id
1	M.SARAVANA KUMAR	ASST. PROF GRII	MECH./ AVIT	saravanakumar@avit.ac.in
2	Dr. R.Jayaraman	ASSOPROF	Mech/VMKVEC	jayaramanr@vmkvec.edu.in

17M	ESE1	4	REVERSE ENGINEERING							Categ	ory	L	Т	Р	Credit
1/101			KEVEKSE ENGINEEKING							EC(P	S)	3	0	0	3
require applica PRER	oursere ements ations	eviews s,suita in aero	blerev ospace,	iousste erseeng , autom	gineerir	igsyste	m	-					custome: turing&r		gineerin
NIL															
COUI	RSE C)BJE(CTIVE	ES											
1	Toin	troduc	etheva	riousst	eps inv	olved i	n reve	erseeng	gineeri	ng					
2	To u	nderst	andthe	design	ofapro	ductbas	sed on	custon	nerrequ	uiremen	its				
3	Toin	troduc	easuit	ablerev	erseeng	gineerii	ngsyst	emfor	inspec	tion and	l manuf	acturin	g		
4	To k	now th	neRE a	pplicat	ions in	aerospa	ace, au	itomot	iveand	medica	al sector	s.			
COUI	RSE C	OUTC	OME	5											
On the	succe	ssfulc	omplet	ion oft	hecour	se, stud	lentsw	illbeab	ole to						
CO1.I	dentif	ythest	epsinv	olved i	nrevers	e engir	neering	gofagiv	ven co	mponen	t.		Unde	rstand	
CO2.I Custor	Design	andfa	bricate	anexist	tingcor	nponen	twiths	uitable	emodif	ications	asper		Appl	у	
	Select	and c			ablere	engine	erings	ystem	forinsp	oectiona	nd		Appl	у	
CO4.A		he re-	engine	eringte	chniqu	esin ae	rospac	ce, auto	omobil	e andm	edical		Appl	у	
MAPI	PING	WITH	I PRO	GRAN	IME (OUTCO	OMES	S AND	PRO	GRAM	ME SP	ECIFI	COUTC	OMES	
COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 1	PO 11	PO 1	PSO 1	PSO 2	PSO 3
CO1	S	L	M	Μ	M					L			S		
CO2	S	М	S	М	S	М				S			М		М
	S	S	S	М	S		М		М	М			S		М
CO3	~	S	S	S	S	М	М		S	S	М	М	S		М

GEOMETRICMODELLINGUSINGPOINT CLOUDDATA:

PointCloudacquisition,SurfaceModellingfromapointclouds,MeshedorFacetedModels,PlanarContourModels,PointstoContourModels,SurfaceModels,Segmentation andSurfaceFittingforPrismaticobjects andFreeFormShapes.Models,

METHODOLOGIESANDTECHNIQUESFORRE-ENGINEERING:

ThePotentialforAutomationwith3-DLaserScanners,Re-Engineering,Computeraided(Forward)Engineering,Computer-aided ReverseEngineering, ComputerVision and Re-Engineering.

SELECTINGARE-ENGINEERINGSYSTEM:

TheSelectionProcess,SomeAdditionalComplexities,PointCaptureDevices,
CaptureDevices,
TriangulationApproaches,"Time-of-
flight"orRangingSystems,Structured-lightandStereoscopicImaging
Systems,issueswithLight-
basedApproaches,TrackingSystems,InternalMeasurementSystems,X-rayTomography,DestructiveSystems,SomeCommentsonAccuracy,Positioning theProbe,
Data,HandlingDataPoints,CurveandSurfaceCreation,InspectionApplications,
ManufacturingApproaches.ManufacturingApproaches.

INTEGRATION BETWEEN RE-ENGINEERING AND ADDITIVE MANUFACTURING:

Modeling CloudDatainRe-Engineering,DataProcessing forRapidPrototyping,IntegrationofREandRPforLayerbased ModelGeneration, AdaptiveSlicing Approach forCloud DataModeling,PlanarPolygonCurve ConstructionforaLayer, Determination ofAdaptiveLayerThickness.

RE-ENGINEERING INAUTOMOTIVE, AEROSPACE, MEDICALSECTORS:

LegalAspectsofRe- Engineering:CopyrightLaw,Re-Engineering,RecentCaseLaw,Barriers to Adopting Re-Engineering.A discussion onafew benchmarkcase studies.

TEXT BOOKS:

1. ReverseEngineering: An IndustrialPerspectivebyRaja and Fernandes, Springer-Verlag2008.

REFERENCES:

1. K. Otto and K. Wood, Product Design: Techniques in Reverse Engineering and New Product Development, PrenticeHall, 2001.

COURSE DESIGNERS

S.No.	Nameof theFaculty	Designation	Department/ Nameof the College	Mail ID
1	SHIVAKUMAR N	Asst. Prof II	Mechanical, AVIT	shiva.thermal@gmail.com
2	RAJA.S	Asst.Prof.	Mechanical/ VMKVEC	raja@vmkvec.edu.in

	17MESE15		7MESE15		STIDD	LY CH	A TNI M		EME	NТ	Ca	ategory	L	T		P (Credit
1 / 1911	29613		SUFF		AIIN IVI.	ANAG		11		EC(PS)) 3	0)	0	3		
The stu	MBLE ident w ndustry	vill und	lerstan	d in deta	uil abou	t the ba	sics in	suppl	y chair	n and th	e inven	tory co	ntrol mo	odels ava	uilable		
PRER	EQUIS	SITE:	NIL														
COUR	RSE OI	BJEC	FIVES	5													
1	To und	lerstar	nd the l	basic iss	ues in S	upply (Chain I	Manag	ement	-							
2	To uno	lerstar	nd the	various s	trategic	sourci	ng and	decis	ions								
3	To app	oly the	variou	ıs invent	ory con	trol mo	dels										
4	To illu	strate	the var	rious inf	ormatio	n tools	of Sup	ply ch	ain								
5	To der	nonstr	ate the	various	supply	chain i	ntegra	tion pi	ocesse	es							
COUR	RSE O	UTCO	MES														
On the			•	ion of th													
CO1.	-		e work / and r	ing prino isk.	ciple an	d Deve	lopme	nt cha	n-Glo	bal opti	mizatio	on-Mana	aging	Under	rstand		
CO2.	Disc	uss the	e core	processe	s - Mar	ket Vs I	Hierar	chy - l	Make V	Vsbuy c	ontinu	ım		Under	rstand		
CO3.	App	ly the	workir	ng princi	ple of in	nventor	y cont	rol-Ec	onomi	c lot siz	ze mode	el.		Ap	ply		
CO4.	Illus	trate tl	ne wor	king prin	nciple o	f Suppl	y chai	n coor	dinatio	on struc	tures.			Ap	ply		
CO5.	Dem	onstra	te the	Strategie	es Distri	bution	and St	rategi	es-Dire	ect ship	ment di	stributi	on	Ap	ply		
MAPP	PING V	VITH	PRO	GRAMN	AE OU	ТСОМ	ES A	ND PI	ROGR	AMM	E SPEC	CIFIC (OUTCO	OMES			
CO S	PO1	PO 2	PO 3	PO4	PO5	PO6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3		
CO1	S	L	L	L									L	-	-		
CO2	М	L	L	L									L	-	-		
CO3	S	М	L	L									L	-	-		
CO4	S	М	L	М									L	-	-		
CO5	S	Μ	L	М									L	-	-		

Syllabus

Introduction to SCM

Development chain-Global optimization-Managing uncertainty and risk-Evolution of SCM-Complexity of SCM-Why SCM?-Key Issues in SCM

Strategic Sourcing

Outsourcing – Make Vs buy - Identifying core processes - Market Vs Hierarchy - Make Vsbuycontinuum - ourcing strategy - Supplier Selection and Contract Negotiation. Creating a worldclass supply base- Supplier Development - World Wide Sourcing.

Inventory Management & Risk Pooling

Introduction and forms of inventory-Single stage inventory control-Economic lot size model-Effect of demand uncertainty-Single period models-Initial inventory-Multiple order opportunities-Periodic review policy-continuous review policy

The Value of Information

The bullwhip effect-Supply chain coordination structures-Information sharing & incentivesInformation and supply chain trade-offs-Centralized and decentralized decisionmakingand performance impacts-Learning organization principles -Structure-process-event dependencies- Functional Products-Innovative products-Efficient supply chains-Responsive supply chains-Agile supply chains

Supply Chain Integration

Push, pull, and push-pull systems-Demand-driven strategies-Impact of lead time-Impact of the Internet on supply chain-strategies Distribution Strategies-Direct shipment distribution-Intermediate inventory storage pointstrategies-Transhipment

Text Books:

1. Janat Shah, Supply Chain Management – Text and Cases, Pearson Education.

2. Sunil Chopra and Peter Meindl, Supply Chain Management-Strategy Planning and Operation, PHI Learning / Pearson Education.

Reference:

 Ballou Ronald H, Business Logistics and Supply Chain Management, Pearson Education,
 David Simchi-Levi, Philip Kaminsky, Edith Simchi-Levi, Designing and Managing the SupplyChain: Concepts, Strategies, and Cases, Tata McGraw-Hill

S.N o	Name of the Faculty	Designation	Department / Name of the College	Mail ID			
1	SAMUVEL MICHAEL	Asso.Prof Gr-II	MECH/AVIT	samuvelmichael@avit.ac.in			
2	S DURAITHILAGAR	Asso Prof	MECH/VMKVEC	duraithilagar@vmkvec.edu.in			

17MESE01	ENERGY CONSERVATION IN	Category	L	Т	Р	Credit	
1/MESEUI	THERMAL SYSTEMS	EC(SE)	3	0	0	3	

Preamble

This course is intended to introduce principles of energy auditing and to provide measures for energy conservation in thermal utilities

Prerequisite : NIL

Course Objective

1	To provide him the present energy scenario and the need for energy conservation.							
2	To understand energy monitoring / targeting aspects of Energy							
3	To study the different measures for energy conservation and financial implications of various thermal utilities.							
4	To study the different measures of energy conservation in thermal systems.							
5	To provide energy conservation measures of different thermal utilities.							
Cour	Course Outcomes: On the successful completion of the course, students will be able to							
CO1.	Understand the energy sources and scenario.	Understand						
CO2.	Understand energy monitoring / targeting aspects of Energy	Understand						

CO3.	To apply the measures for energy conservation and financial implications of various thermal utilities.	Apply
CO4.	To apply the concepts and performance study of different types of corrosion	Apply
CO5.	Performance analysis of thermal utilities	Analysis

Mapping with Programme Outcomes and Programme Specific Outcomes

	-	-					-								
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	P S O 3
CO1	S	М	L	L	-	-	-	-	-	-	-	-	S	-	-
CO2	S	М	М	М	-	-	-	-	-	_	-	-	S	-	-
CO3	S	М	М	М	-	-		-	-	-	-	-	S	-	-
CO4	S	М	М	М	-	-	-	-	-	-	-	-	S	-	-
CO5	S	М	S	М	-	-	-	-	-	-	-	-	S	-	-
S- Stron	g; M-Med	ium; L-Lo	DW												

INTRODUCTION

Indian Energy Scenario – Types & Forms of Energy - Primary / Secondary Energy Sources – Energy Conservation – Need – EC Act 2003 : Salient Features – Energy Intensive Industries – Barriers - Roles & Responsibility of Energy Managers – Energy Auditing : Preliminary & Detailed - Benchmarking.

ENERGY MONITORING & TARGETING

Data & Information Analysis – Cost / Energy Share Diagram – Data Graphing – Break Even Analysis – Depreciation – Financial Analysis Techniques – CUSUM Technique – ESCO Concept – ESCO Contracts.

PERFORMANCE STUDY OF THERMAL UTILITIES – 1

Boiler – Stoichiometry – Combustion Principles – Heat Loss Estimation – Steam Traps – Steam Piping & Distribution – Thermic Fluid Heaters – Furnaces – Insulation & Refractories

PERFORMANCE STUDY OF THERMAL UTILITIES – 2

Introduction- forms of corrosion-pitting, intergranular, stress corrosion, corrosion fatigue, dezincification, erosion-corrosion, Crevice Corrosion, Fretting-Protection methods-PVD, CVD.

PERFORMANCE STUDY OF THERMAL UTILITIES – 3

Basics of R & A/C – COP / EER / SEC Evaluation – Psychometric Chart Analysis – Types & Applications of Cooling Towers – Basics – Performance Analysis – DG Set – Performance Prediction–Cost of Power Generation – Scope for Energy Conservation in all these

TEXT BOOKS

1	Smith, CB Energy Management Principles, Pergamon Press, NewYork, 1981
2	Hamies, Energy Auditing and Conservation; Methods Measurements, Management and Case study, Hemisphere, Washington, 1980
	Trivedi, PR, Jolka KR, Energy Management, Commonwealth Publication, New Delhi, 1997
Refere	ence
1	Write, Larry C, Industrial Energy Management and Utilization, Hemisphere Publishers, Washington, 1988
2	Diamant, RME, Total Energy, Pergamon, Oxford, 1970
3	Handbook on Energy Efficiency, TERI, New Delhi, 2001
4	Guide book for National Certification Examination for Energy Managers and Energy Auditors (Could be downloaded from www.energymanagertraining.com)

Cours	Course Designers										
S.No	Faculty Name	Designation	Department/Name of the College	Email id							
1	R.ANANDAN	Associate professor	Mechanical / V.M.K.V /Engineering college	anandan@vmkvec.edu.in							
2	N.LAKSHMINARAYANAN	Associate professor	Mechanical /AVIT /Engineering college	nlakshminarayanan@avit.ac.in							

171	ESE1	0	PROC	CESS P	LANN	ING A	ND C	OST ES	TI	Categ	ory	L	Т	Р	Credit
1/101	LSLI	9			MA	ATION				EC(S	SE)	3	0	0	3
This	COU cou estimat	rse	revie or vari		the ducts a	variou fter pro		steps lanning.	involv	ved	in p	rocess	planning	g concept	s and
PREF	REQU	ISITE	E - NII												
COU	RSE C)BJE(CTIVI	ES											
1	To k	now a	bout V	Vork stu	udy, Er	gonom	ics								
2	To d	emons	strate a	about pr	cocess j	plannin	g and i	its approa	aches.						
3	To il	lustrat	te aboi	ut eleme	ents of	cost est	imatic	on.							
4	To ca	alculat	te the	various	Cost E	Estimati	on met	thods.							
5	To a	nalyze	e the to	otal proc	duction	i cost es	timati	on.							
COU	RSE C	OUTC	OME	S											
On the	e succe	essful	compl	etion of	f the co	ourse, st	udents	will be	able to)					
CO1	Unde	erstand	l the w	ork stu	dy and	ergono	mics.						Uno	derstand	
CO2	Dem	onstra	te the	various	steps i	nvolve	d in pr	ocess pla	Inning				Арр	ply	
CO3	Illust	rate tł	ne vari	ous elei	ments o	of cost o	estimat	tion.					Арр	ply	
CO4	Appl	y the v	variou	s cost e	stimati	on metl	nods ir	n product	ion.				Арр	ply	
CO5	Anal	yze th	e cost	estimat	ion of	various	jobs in	nvolved	in proc	duction			Ana	alyze	
MAP	PING	WITI	H PR(OGRAN	MME	OUTC	OMES	S AND P	ROG	RAMM	IE SPE	CIFIC	OUTCO	OMES	
COS	PO 1	PO 2	PO 3	PO4	PO 5	PO6	PO 7	PO8	PO 9	PO1 0	PO11	PO1 2	PSO1	PSO2	PSO3
CO1	S	L	L	L	-	-	-	-	-	-	L	-	М	-	-
CO2	S	М	М	М	-	-	-	-	-	-	М	-	М	-	-
CO3	S	М	М	М	-	-	-	-	-	-	М	-	S	-	
CO4	S	М	М	М	-	-	-	-	-	-	S	-	S	-	-
	S	М	М	Μ	-	-	-	-	-	-	S	-	S	-	-

WORK STUDY AND ERGONOMICS:

Method study – Definition – Objectives-Motion economy- Principles – Tools and Techniques-Applications – Work measurements- purpose – use – procedure – tools and techniques- Standard time –Ergonomics –principles – applications.

PROCESS PLANNING :

Definition – Objective – Scope – approaches to process planning- Process planning activities – Finished part requirements operating sequences machine selection material selection parameters- Set of documents for process planning Developing manufacturing logic and knowledge production time calculation – selection of cost optimal processes.

INTRODUCTION TO COST ESTIMATION:

Objective of cost estimation- costing - cost accounting- classification of cost-Elements of cost.

COST ESTIMATION:

Types of estimates – methods of estimates – data requirements and sources- collection of costallowancesin estimation.

PRODUCTION COST ESTIMATION

Estimation of material cost, labour

cost and over heads, allocation of overheads - Estimation for different types of jobs

TEXT BOOKS:

1. Sinha.B.P., "Mechanical Estimating and Costing", Tata McGraw-Hill, Publishing Co.2002

REFERENCES:

- 2. Russell.R.S and Tailor, B.W, "Operations Management", PHI, 4th Edition.
- 3. Chitale.A.V. and Gupta.R.C., "Product Design and Manufacturing", PHI, 2nd Edition.

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1	G.ANTONY CASMIR	Asst. Prof II	Mech/AVIT	antonycasmir@avit.ac.in
2	C THANGAVEL	Asst Prof	Mech/VMKVEC	thangavel@vmkvec.edu.in

178/15	SE 20		RA	PID P	ROT	ОТҮРІ	NG A	ND		Categ	ory	L	Т	Р	Credi
1 / I VIE	CSE20				TOO	DLING				EC((SE)	3	0	0	3
This o	MBLE course f the re	provic						e Rap	id Pro	totypin	ig and	Toolin	g techni	ques, w	hich is
PREF	REQUI	SITE:	NIL												
COU	RSE O	BJEC'	TIVES	5											
1	To un	derstar	nd the	history	and c	levelop	ment f	or rap	id proc	duct dev	velopm	ent.			
2	To dis	cuss th	ne vari	ous tec	chniqu	es of so	olid ba	sed pr	ocess	for rapi	d produ	ction.			
3	To dis	cuss th	ne vari	ous teo	chniqu	es of ba	ased p	rocess	for ra	pid proc	luction				
-	To dis	cuss fl	ne vari	ous to	olingu	ised for	Ranie	1 manı	Ifactur	ing tool	ling tec	hniques			
4	To discuss the various tooling used for Rapid manufacturing tooling techniques.														
5	Optimize FDM process parameters to improve the quality of the parts.														
COU	RSE O	UTCO	MES												
On the	e succes	ssful co	omplet	ion of	the co	ourse, st	udents	s will b	be able	e to					
CO1.	Und	erstan	d the w	vorking	g princ	ciple an	d vario	ous RF	PT tech	nniques				Ur	derstand
CO2.	-	lain th ible pr		ous soli	id and	liquid l	based	metho	ds for	RPT teo	chnique	es used	to select	Арј	oly
CO3.	Expl proc		e vario	ous pov	vder b	ased m	ethods	for R	PT tec	hniques	s used t	o select	suitable		Apply
CO4.		•		-		-				chining	-				Apply
CO5.		. .	cation 1 proce		ed kno	wledge	e relate	ed to R	PT in	Reverse	e Engir	eering			Apply
MAP					IME (OUTC	OMES	5 ANE	PRO	GRAM	IME S	PECIF	IC OUT	COME	5
СО		PO	PO	РО	РО		РО	PO	PO	PO1	PO1	PO1	PSO	PSO	
S	PO1	2	3	4	5	PO6	7	8	9	0	1	2	1	2	PSO3
CO1	S	М	L	-	-	-	-	-	-	-	-	-	S	-	-
CO2	S	М	L	-	М	-	-	-	-	-	-	-	S	-	_
CO3	S	М	М	-	М	-		-	-	-	-	-	S	-	-
CO4	S	S	S	-	Μ	-	-	-	-	-	-	-	S	-	-
	S	S	S	_	М	-	-	-		-	-	-	S	-	-

Syllabus

INTRODUCTION

History – Development of RP systems – RP process chain - Impact of Rapid Prototyping on Product Development –Digital prototyping - Virtual prototyping-Rapid Manufacturing- Principle – Fundamental – File format – Other translators-Data Processing for Rapid Prototyping: CAD model preparation, Part orientation and support generation, Support structure design, Model Slicing and contour data organization, direct and adaptive slicing, Tool path generation.

LIQUID AND SOLID BASED PROCESS:

Classification – Liquid based system – Stereolithography (SLA)-Solid Ground Curing (SGC)- products, Advantages, Limitations, Applications and Uses. Solid based system – Fused Deposition Modeling- Laminated Object Manufacturing-Multi Jet Modeling System-principle, process, products, advantages, applications and uses

POWDER BASED PROCESS

Selective Laser Sintering – Three Dimensional Printing – Direct shell production casting –Laser Engineered Net Shaping (LENS)- -Direct Metal Deposition-Principle-Materials-process- products,-advantages- limitations- applications

RAPID TOOLING

Introduction-Need-Types -Advantages-Applications-Indirect rapid Tooling-silicone Rubber Tooling-Spray metal tooling-RSP Tooling-Reaction Injection Moulding-Direct Rapid Tooling-Direct AIM-DMLS-Copper Polyamide-Laminated Tooling

REVERSE ENGINEERING

Introduction-concept of Reverse Engineering - Generic Process - Scanning-measuring device- contact type and non-contact type -Point Processing- CAD model creation from point clouds-preprocessing, point clouds to surface model creation, medical data processing – types of medical imaging, software for making medical models, medical materials, other applications

TEXT BOOKS:

 RafiqI. Noorani, Rapid Prototyping, "Principles and Applications", Wiley & Sons, 2006.
 Chua C.K, Leong K.F and Lim C.S, "Rapid Prototyping: Principles and Applications", Second Edition, World Scientific, 2003.

REFERENCES:

1. N.Hopkinson, R.J.M, Hauge, P M, Dickens, "Rapid Manufacturing – An Industrialrevolution for the digital age", Wiley, 2006

2. Ian Gibson, "Advanced Manufacturing Technology for Medical applications: Reverse Engineering, Software conversion and Rapid Prototying", Wiley, 2006

3.Paul F.Jacobs, "Rapid Prototyping and Manufacturing : Fundamentals of Stereolithography", McGraw Hill 1993.

4. Pham. D.T., and Dimov. S.S., "Rapid Manufacturing", Springer Verlog 2001.

S.N o	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1	SAMUVEL MICHAEL	Asst.Prof	MECH/AVIT	samuvelmichael@avit.ac.in
2	S. ARUNKUMAR	Asst.Prof.	MECH/VMKVEC	arunkumar@vmkvec.edu.in

17М	ESE38				STRIA			Cate	gory	L		Т	Р	Cr	edit
1/111	LSLJO		E	NGIN	EERI	NG		EC	(SE)	3		0	0 3		
produc										d stud	y techr	niques,	work 1	neasure	ement,
NIL	quisite														
Cours	e Obje	ctive													
1	To un	derstan	d the i	mport	ance o	f work	c study	y meth	ods ar	nd its in	portan	ce in v	arious fie	elds.	
2	To dev	velop tl	he skil	ls of s	electio	on of a	plant	and al	so mat	terial ha	ndling	equipi	nent requ	uired.	
3	To un	derstan	d PPC	and it	s func	tions.									
4	To app	ly the	skills c	of purc	hasing	g mate	rials a	nd the	ir man	agemer	nt.				
5	To un	derstan	d the a	warer	less on	n vario	us lab	our ac	ts and	manag	ement p	orincip	les.		
	0	000000	0 41-	0.0750		0.0000		. of 41-	0.00		donta		abla ta		
										se, stu	ients v			1	
CO1.	Exp	lain the	e work	metho	ods thr	ough	work i	neasur	ement	ţ			Understa	and	
CO2.	Illus	trate th	ne effic	cient w	ork sy	vstem							Apply		
CO3.	Out	ine the	e suitab	le for	ecastir	ng tech	inique	s for g	iven a	pplicati	ons		Analyze		
CO4.	Den	onstra	te the	charts.	diagra	ams ar	nd pro	ductio	n plan	•			Apply		
<u>CO5</u>					-		-		-	applica	4:000				
CO5.	Exa	mne tr	ie theo	ry 111 1	naustr	iai eng	gineeri	ing and	i their	applica	uons.		Apply		
Mapp	ing wi	th Prog	gramn	ne Ou	tcome	s and	Prog	ramm	e Spec	cific Ou	tcome	5			
G 0	DOI	РО	РО	РО	РО	РО	РО	РО	РО	PO1	PO1	PO1	PSO	PSO	PSC
CO	PO1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	S	L	L	L	-	-	-	-	-	-	-	-	L	-	-
CO2	S	L	L	L	-	-	-	-	-	-	-	-	L	-	-
CO3	S	М	М	L	-	-	-	-	-	-	-	-	L	-	-
CO4	S	М	М	L	_	_	-	-	-	-	-	-	L	-	-
CO5	S	М	М	L	_	_	-	-	-	-	-	-	L	-	-
	ong; M				_	-	-	-	_	-	-	-		-	

WORK MEASUREMENT AND WORK STUDY

Evolution and importance of industrial engineering-Production-Classification-Productivity- Factors influencing productivity-quality route to productivity- Introduction to Work measurement and its Techniques-Work study-Definition-Procedure and benefits of work study-Charting techniques-Time study-Stop watch time study-Motion study-Work sampling procedure-collection of data-Method study.

PLANT LAYOUT AND MATERIAL HANDLING

Plant location and site location-factors influencing the location-Plant layout-Types, needs, factors influencing the plant layout-Plant layout procedure-Material handling-scope and principles of material handling-Types of Material Handling equipment-Factors influencing material handling-Methods of material handling.

PRODUCTION PLANNING AND CONTROL

Introduction-Objectives and Functions of PPC-Forecasting-Sales Forecasting Techniques-Types of Forecasting-Routing-Objectives and procedure of routing-Scheduling-Master Production Schedulepurpose and preparation of schedules-Scheduling techniques like CPM and PERT- Dispatching-Dispatch Procedure-Centralized and Decentralized dispatching-Tool dispatching

MATERIAL MANAGEMENT

Procurement of materials-codification of materials-Inventory control-Objectives of inventory control-EBQ & EOQ values-Inventory models-ABC analysis-Material requirements planning(MRP)-Enterprise resource planning(ERP)-supply chain management(SCM)-Inspection and quality control-SQC-control charts-Sampling procedures-Benchmarking

INDUSTRIAL LEGISLATION AND MANAGEMENT CONCEPTS9 Hours

Importance and necessity of labour acts-principles of labour legislation-various acts-Industrial Ownership and various types-Functions of management-Manpower Planning-Recruitment and Selection-Break Even Analysis-Managerial applications of breakeven point-Decision making -Techniques of decision making.

Text Books

тел в	UUNS.											
1	Khan, M.I, " Indust	rial Engineering	", New Age Internation	nal, 2nd Edition, 2009.								
2	Kapoor N.D, "Hand	lbook of Industr	ial Law", sultan Chan	d & sons, 14th revised edition 2013.								
Refere	rence Books:											
1	Khanna, O.P, "Industrial Engineering and Management", Dhanpat Rai and Sons, 2008.											
2	Samuel Eilon, " Elements of Production Planning and Control ", Universal Publishing Corporation, Bombay, 1994.											
3	Panneerselvam R, "Production and Operations Management", PHI, New Delhi, 2006.											
Course	e Designers											
Sl.No	Faculty Name	Designation	Department/Name of the College	Email id								
1	B.SELVA BABU	Assistant Professor	Mech / AVIT	selvababu@avit.ac.in								
2	S.Duraithilagar	Associate Professor	Mech/VMKVEC	duraithilagar@vmkvec.edu.in								

9 Hours

9 Hours

9 Hours

1 2 To	le rse prov nufactur nent. isite – N Objectiv o explain o illustra o analyse	ring syste	ems af c conc ious q nd VS	vledge ford th epts of uality	f lean	rious t ctice f	or stre	nd tech						S.
This cour Lean Mar environn Prerequi Course (1 To 2 To	rse prov nufactur nent. isite – N Objectiv o explain o illustra o analyse	TIL Ve the basi the JIT a	ems af c conc ious q nd VS	ford the pepts of uality	f lean	ctice f	or stre							S.
Lean Mar environn Prerequi Course (1 To 2 To	nufactur nent. isite – N Objectiv o explain o illustra o assess o analyse	TIL Ve the basi the JIT a	ems af c conc ious q nd VS	ford the pepts of uality	f lean	ctice f	or stre							s.
Course (1 To 2 To	Objectiv) explain) illustra) assess) analyse	ve the basi te the van the JIT a	rious q nd VS	uality		manuf	acturi							
1 To 2 To) explain) illustra) assess) analyse	the basi te the var the JIT a	rious q nd VS	uality		manuf	acturi							
1 2 To) illustra) assess) analyse	te the var the JIT a	rious q nd VS	uality		manuf	acturi							
-	assess analyse	the JIT a	nd VS		impro		actuill	ng pro	cess					
3 To	o analyse			M Tar	mpro	vemer	nt meth	nods ir	lean ma	nufact	uring.			
5		e the imp		IVI Tec	chnolo	gies.								
4 To	o illustra		ortanc	e of JI	DOK	A and	its role	<i>.</i>						
5 To		te the im	portan	ce of e	employ	vee inv	volven	ent ar	d systen	natic p	lanning	g.		
Course (Outcom	es: On t	he suc	cessfu	l com	pletio	n of th	e cou	rse, stud	ents w	vill be	able to		
	Explain sector	the lean	manuf	acturir	ng Prir	nciples	, basic	conce	epts in a	manuf	acturin	g	Unders	stand
CO2. 0	Choose	a suitable										r	Apply	
		ent with ed manu				Kanba	ın rule	s and `	VSM ap	olicabl	e to a		Apply	
CO4.		the impo				nd the	imple	menta	tion in a	manuf	acturir	ng	Unders	tand
1 1 1 2	Illustrate culture.	e the requ	ireme	nt of e	mploy	vee inv	olvem	ent in	the impl	ement	ation o	f lean	Unders	tand
Mapping	g with F	rogram	me Ou	itcom	es and	l Prog	ramm	e Spe	cific Ou	tcomes	5			
CO	PO P 1 2		PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	M S		L L	-	-	-	-	7 -	-	-	-	M	-	-
CO2	S I	_ S	L	-	-	-	-	-	-	-	-	М	-	-
CO3	S I	_ S	L	-	-	-	-	-	_	-	-	S	-	-
CO4	M S	s s	S	-	-	-	-	-	-	-	-	S	-	-
CO5	M S	s s	L	-	-	-	-	_	-	-	-	S	-	-
S- Stron	9: M-M	edium• `	[].09	7	1	I	1		I			1	1	<u> </u>

INTRODUCTION

Objectives of lean manufacturing-key principles -- traditional Vs lean manufacturing-Origin of lean production system – Necessity – Lean revolution in Toyota – Systems and systems thinking – Basic image of lean production – Customer focus – Muda (waste).

STABILITY OF LEAN SYSTEM

Standards the Productive in lean system-5S system-Total Maintenancestandardized work-Elements of standardized work-Charts define standardized to work-Man power reduction-Overall efficiency-standardized work and Kaizen-Common layouts.

JUST IN TIME

Introduction - JIT system-Principles and elements of JIT - Kanban rules - Expanded role of conveyance

- Production leveling - Pull and Push systems - Process Mapping and Value stream mapping

JIDOKA (AUTOMATION WITH A HUMAN TOUCH)

Jidoka concept – Poka-Yoke (mistake proofing) systems – Inspection systems and zone control – Types and use of Poka-Yoke systems – Implementation of Jidoka.

WORKER INVOLVEMENT AND SYSTEMATIC PLANNING METHODOLOGY

Involvement – Activities to support involvement – Quality circle activity – Kaizen training - Suggestion Programmes – Hoshin Planning System (systematic planning methodology) – Phases of Hoshin Planning – Lean culture

Text Books

1	Pascal Dennis, Lean Production Simplified: A Plain-Language Guide to the World's Most Powerful Production System, (Second edition), Productivity Press, New York.
2	Mike Rother and John Shook, Learning to See: Value Stream Mapping to Add Value and Eliminate MUDA, Lean Enterprise Institute.

Reference Books

- 1 Jeffrey Liker, the Toyota Way: Fourteen Management Principles from the World's Greatest Manufacturer, McGraw Hill.
- 2 Michael L. George, Lean Six SIGMA: Combining Six SIGMA Qualities with Lean Production Speed, McGraw Hill.

S.No	Faculty Name	Designation	Department/ Name of the College	Email id
1	J.SENTHIL	Associate Professor	Mech / AVIT	jsenthil@avit.ac.in
2	S.DURAITHILAGAR	Associate Professor	Mech/VMKVEC	duraithilagar@vmkvec.edu.in

17MESE	41	МАТ	NTEN	алсе	MAN	AGEM	FNT	Ca	tegory	L	Т	Р	Cı	redit
	/71	MAL		ANCE		AGEM		E	C(SE)	3	0	0		3
Preamble On completion in industrial			se to p	rovide	e basic	knowl	edge	of Ma	intenanc	e man	agemer	nt concep	ts and s	afety
Prerequisite NIL	;													
Course Obje	ective													
1 To unc			maint	enance	e syste	ems								
2 To un	dersta	and the	e main	tenanc	e of p	olannin	g and	contro	ol syster	ns				
3 To ap	ply th	e prev	ention	and	monito	oring of	f mai	ntenar	ice					
4 To ap	ply th	e safet	ty syst	em in	indust	ries								
	oly the	e total	produ	ction r	nainte	nance s	syster	ns.						
Course Outo	comes	s: On	the su	ccessf	ul con	npletio	n of t	he co	urse. sti	idents	will be	able to		
									nt conce			Underst	and	
CO2. Un	dersta	ind sy	stema	tic me	thod o	of main	tenan	ce pla	nning ar	nd con	trol	Understa	and	
								- I	0					
CO3. App	oly th	e oper	ating a	and sh	utdow	n main	tenan	ce of l	ogistics			Apply		
CO4. App	ly dif	ferent	types	of saf	ety me	easures	and r	eliabil	ity of m	ainten	ance	Apply		
CO5. Man	age th	ne fund	damen	tal of 1	total p	roducti	ve ma	aintena	ance sys	tems		Apply		
Mapping wi	th Pr	ogran	nme O	utcon	nes an	d Prog	grami	ne Sp	ecific O	utcom	ies			
CO PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO	PO12		PSO	PSO
1	2	3	4	5	6	7	8	9	0	11		1 L	2 L	3
CO1 S	L	М	L	-	-	-	-	-	-	-	-			-
CO2 S	Μ	М	М	-	-	-	-	-	-	-	-	L	L	-
CO3 S	М	М	М	-	-	-	-	-	-	-	-	L	L	-
CO4 S	S	М	М	-	-	-	-	-	-	-	-	L	L	-
CO5 S	S	М	L	_	-	-	-	_	-	-	-	L	L	_
S- Strong; N	/I-Me	dium;	L-Lo	W		<u> </u>							<u> </u>	

INTRODUCTION

Basic elements of maintenance system – inspection, planning & scheduling, job execution, record keeping, data analysis, learning & improvement. Maintenance objectives and Scope – Challenges and functions of Maintenance management

MAINTENANCE PLANNING AND CONTROL

Establishing a Maintenance Plan - Preliminary considerations, Systematic method of Maintenance Plan and schedule planning and schedule of Plant shut downs

MAINTENANCE LOGISTICS

Preventive, operating and shutdown maintenance; Condition based maintenance and condition monitoring –Resource requirements: Optimal size of service facility – Optimal repair effort — Spares control.

OVERVIEW OF SAFETY

Five Zero concept –FMECA – Maintainability prediction– Design for maintainability – Reliability Centered Maintenance

TOTAL PRODUCTIVE MAINTENANCE

TPM fundamentals – Chronic and sporadic losses – Six big losses — TPM pillars– Autonomous maintenance – computer-aided maintenance management system

TEXT BOOKS

- 1. Bikas Badhury & S.K.Basu, "Tero Technology: Reliability Engineering and Maintenance Management", Asian Books.
- 2. Seichi Nakajima, "Total Productive Maintenance", Productivity Press

Reference Books

1.Industrial Maintenance – H.P.Garg

2. Andrew K.S.Jardine & Albert H.C.Tsang, "Maintenance, Replacement and Reliability", Taylor and Francis

S.No	Faculty Name	Designation	Department/ Name of the College	Email id
1	G.Nagarajan	Professor	Mechanical/VMKVEC	nagarajan@vmkvec.edu.in
2	Mr.Surendrababu	Assistant Professor	Mechanical AVIT	surendarababu@avit.ac.in

Preamble			17MFSF44						ategor	У	L	Т	Р	Cre	edit
	MANAGEMENT EC(SE) 3 0								C(SE))	3	0	0		3
industries.	se provi	ides 1	basic 1	knowl	edge o	of Six s	sigma	conce	pts rela	ated to	mainter	nance of	quality	used in	
Prerequis	site : N	IL													
Course O	•														
1 To	know a	about	t six si	igma s	tories,	and n	nethod	ls of ir	nprove	ement o	of qualit	ty			
2 To	o understand basic concept and advanced in belt technologies														
3 To	apply the implementation and selection of projects idea														
4 To	applica	ation	of pr	oject t	ools a	nd des	ign								
5 To	unders	tand	the so	oftware	e techn	ologie	es in si	ix sign	na						
Course O	utcom	es: C)n the	succe	essful	compl	etion	of the	cours	e, stud	ents wi	ll be abl	e to		
	Describe information about the six sigma concept, stories, and methods of quality improvement.								ds of	Remember					
CO2. E	Explain the concepts of six sigma used in industry and belt technologies, Understand														
	Apply the six sigma methodology concept in used in project selection and to know about the types of mapping.Apply														
CO4. In	mplem	ent t	he dif	ferent	six sig	gma to	ols in	projec	ts.				Apply	r	
CO5. S	Select t	he so	oftwar	e techi	nologie	es dev	eloped	l in six	sigm	a.			Understand		
Mapping	with P	rogr	amm	e Outo	comes	and F	Progra	amme	Speci	fic Out	comes				
CO F	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO 3
CO1	S	L	L	L	-	-	-	-	-	-	-	-	L	-	-
CO2	S	L	L	L	-	-	-	-	-	-	-	-	L	-	-
CO3	S	Μ	Μ	Μ	-	-	-	-	-	I	-	-	L	-	-
CO4	S	М	M	М	-	-	-	-	-	-	-	-	L	-	-
CO5	S	L	M	М	-	-	-	-	-	-	-		L	-	-
S- Strong	; M-M	ediu	m; L-	Low							•			•	-

INTRODUCTION TO SIX SIGMA

Introduction to quality, Definition of six sigma, origin of six sigma, Six sigma concept, Critical success factors for six sigma. Six Sigma success stories. Statistical foundation and methods of quality improvement

SIX SIGMA CONCEPT

Six Sigma for manufacturing, Six Sigma for service, Understanding Six Sigma organization, Leadership council, Project sponsors and champions, Black Belt, Green Belts.

METHODOLOGIES

Methodology of Six Sigma, DMAIC, DFSS, Models of Implementation of Six Sigma, Selection of Six Sigma Projects. Selecting projects – Benefit/Effort graph, Process mapping, value stream mapping

PROJECT SELECTION FOR SIX SIGMA

Six Sigma Tools: Project Charter, Process mapping, Measurement system analysis, Hypothesis Testing, Quality Function deployment, Failure mode effect analysis, Design of Experiments

INTRODUCTION TO SOFTWARES FOR SIX SIGMA

Sustenance of Six Sigma, Communication plan, Company culture, Reinforcement and control, Introduction to softwares for Six Sigma, Understanding Minitab, Graphical analysis of Minitab plots

Text Books

1	Michael L. George, Lean Six Sigma, McGraw-Hill
2	Forrest W. Breyfogle III, Implementing Six Sigma: Smarter solutions Using Statistical Methods

Reference Books

- 1 Ra Geoff Tennant, Six Sigma: SPC and TQM in manufacturing and service, Gower Publishing Co
- 2 Greg Brue, Six Sigma for managers, TMH
- **3** Peter S. Pande, The Six Sigma Way, TMH Team Field book

S. No	Faculty Name	Designation	Department/Nam e of the College	Email id			
1	J.RABI	Asso.Prof	Mech / VMKVEC	rabi@vmkvec.edu.in			
2	S.KALYANAKUMAR	Asst. Prof Gr-II	Mech/AVIT	kalyanakumar@avit.ac.in			

	1		HYI	ORAU	LICS	AND		Cat	egory	I		Т		Р	Credit
17MEEC0	PNEUMATIC SYSTEMS EC(PS)					C(PS)	3	;	0		0	3			
PREAMBI The studer pneumatic	nts c	-	-				expec	cted to	o unde	erstan	d the	conc	cepts c	of Hydra	ulic and
PREREQU	ISIT	TE-N	IL												
COURSE (OBJE	ECT	IVES												
1 To	unde	erstan	id aboi	ıt basi	cs of fl	uid po	wer sy	stems	fundar	nental	S				
2 То	acqu	ire k	nowle	dge ab	out coi	mpone	nts use	ed in h	drauli	c and	pneun	natic s	ystems		
3 To	unde	erstan	id aboi	ut the	variou	s types	of val	lves an	d actua	ators					
4 To	deve	lop h	iydrau	lic circ	uits fo	r diffei	rent ap	plicati	ons						
5 То	deve	lop p	neum	atic cir	cuits f	or diffe	erent a	pplicat	ions						
COURSE (DUT	CON	/IES												
On the succ	essfu	l cor	npletio	on of tl	ne coui	se, stu	dents	will be	able to	C					
CO1. Desci application.	ibe tl	he di	fferent	t drive	systen	ns and	identif	fy whic	h is su	itable	for sp	ecific		Unde	rstand
CO2. Discu	iss th	e wo	rking	of diffe	erent c	ompon	ents ir	n fluid	power	systen	n.			Unde	rstand
CO3. Expla		out t	he util	izatior	n of cy	linders	, accu	mulato	rs, valv	ves and	d vario	ous co	ntrol	Unde	rstand
CO4.Devel	op a f	feasil	ble hy	draulic	circui	t for a	given	applica	ation.					Ар	ply
CO5. Devel	lop a	feasi	ible pr	ieumat	ic circi	uit for	a give	n appli	cation.					Ар	ply
MAPPING	WI	ГН Р	PROG	RAM	ME O	UTCO	MES	AND]	PROG	RAM	ME S	PECI	FIC O	UTCOM	ES
COS P		PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PSO2	PSO3
CO1 S	5	L	L			-							М		
CO2 S	5	L	L			-							М		
CO3 S	5	Μ	М			-							М		
CO4 5	5	S	S	М		М							М		
CO5 S	5	S	S	Μ		М							М		
S- Strong;	M-M	lediu	m; L-	Low											
SYLLABU	S														
FLUID PO	WEI	R SY	STEN	AS AN	D FU	NDAM	IENT	ALS							
Introduction system, Typ															

system, Types of fluid power systems, Properties of fluids – General types of fluids – Fluid power symbols. Basic Laws in Fluid power system. Low cost automation.

HYDRAULIC SYSTEM & PNEUMATIC SYSTEMS COMPONENTS

Pump classification – Gear pump, Vane Pump, Piston pump, construction and working of pumps– Variable displacement pumps. Pneumatic Components: Compressors-types. Filter, Regulator, Lubricator Unit, Muffler

VALVES AND ACTUATORS

Construction of Control Components: Director control valve -3/2 way valve, 4/2 way valve, Shuttle valve , check valve - pressure control valve - pressure reducing valve, sequence valve-Flow control valve. Fluid Power Actuators: Linear hydraulic actuators - Types of hydraulic cylinders - Single acting, Double acting special cylinders like Telescopic, Cushioning mechanism, Construction of single acting and double acting cylinder.

DESIGN OF HYDRAULIC CIRCUITS

Accumulators and Intensifiers: Types of accumulators – Accumulators circuits, intensifier – Intensifier circuit. Circuits: Reciprocating- Regenerative - Quick return – Sequencing – Synchronizing - Safety circuits - Press – Planer.

DESIGN OF PNEUMATIC CIRCUITS

Fluid Power Circuit Design: Speed control circuits, synchronizing circuit, Sequential circuit design for two and three cylinder using cascade method. Pneumo-hydraulic circuit. Electro pneumatic circuit, Fluid power circuits- failure and troubleshooting.

Text Books:

- 1. Anthony Esposito "Fluid Power with Applications" Pearson Education 2013
- 2. Srinivasan "Hydraulic and Pneumatic Controls"- TMH 2011.
- 3. Parr, A. Hydraulics and pneumatics: a technician's and engineer's guide. Elsevier 2011.

Reference:

- 1. Thomson, "Introduction to Fluid power"- Prentice Hall 2004.
- 2. Majumdar, S.R., Oil hydraulic systems: principles and maintenance. McGraw-Hill- 2003.
- 3. Majumdar, S.R., *Pneumatic systems: principles and maintenance*. Tata McGraw-Hill -1996 Education.

S.No	Name of the Faculty	Designation	Department / Name of the College	Mail ID		
01.	Dr.S.Natarajan	.S.Natarajan Asso.Prof MECH/ VMKVEC		natarajanshree@gmail.com		
02	S.KALYANA KUMAR	Asst.Prof	MECH/AVIT	kalyanakumar@avit.ac.in		

On the successful completion of the course, students will be able to Understand the basics of Robot and its drive system. U CO1. Understand the basics of Robot and its drive system. V CO2. To Identify the steps involved in controlling system A CO3. Demonstrate the various kinematics system used in robots. A CO4. Demonstrate the various sensors used in robots. A CO5. Apply the robot in day to day applications A MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIF OUTCOMES A CO3 P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 CO1 S M M M M M M M S M CO2 S M M M M M S M CO3 S S S M M S S M CO3 S S S M M M S S M CO3 S S S <t< th=""><th>Р</th><th>P Cree</th></t<>	Р	P Cree	
To study the application of industrial robots and enhance the knowledge of studiapplications PREREQUISITE - NIL COURSE OBJECTIVES 1 To understand the Robotics and Robot drive system. 2 To Identify the controlling of Robots and devices system. 3 The Evaluate the latest technology of sensors used in robotics. 4 To classify the robot kinematics system. 5 To justify Application of robotics in industry. COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. Understand the basics of Robot and its drive system. U CO2. To Identify the steps involved in controlling system A CO2. Of Identify the steps involved in robots. A CO3 Demonstrate the various sensors used in robots. A CO5. Apply the robot in day to day applications A MAPPING WITH PROFERAMME OUTCOMES AND PROGRAMME SPECE CO1 S N M M S	0	0 3	
COURSE OBJECTIVES 1 To understand the Robotics and Robot drive system. 2 To Identify the controlling of Robots and devices system. 3 The Evaluate the latest technology of sensors used in robotics. 4 To classify the robot kinematics system. 5 To justify Application of robotics in industry. COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. Understand the basics of Robot and its drive system. U CO2. To Identify the steps involved in controlling system A CO3. Demonstrate the various kinematics system used in robots. A CO4. Demonstrate the various sensors used in robots. A CO5. Apply the robot in day to day applications A M M L M M M M M S M CO2 PO1 PO2 PO3 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 CO5 Apply the robot in M M M S M <th>idents ir</th> <th>ts in industr</th>	idents ir	ts in industr	
1 To understand the Robotics and Robot drive system. 2 To Identify the controlling of Robots and devices system. 3 The Evaluate the latest technology of sensors used in robotics. 4 To classify the robot kinematics system. 5 To justify Application of robotics in industry. COURSE OUTCOMES On the successful completion of the course, students will be able to C01. Understand the basics of Robot and its drive system. U C02. To Identify the steps involved in controlling system A C03. Demonstrate the various kinematics system used in robots. C04. Demonstrate the various sensors used in robots. A C05. Apply the robot in day to day applications A COMES OUTCOMES A C03. Demonstrate the various sensors used in robots. A COS			
2 To Identify the controlling of Robots and devices system. 3 The Evaluate the latest technology of sensors used in robotics. 4 To classify the robot kinematics system. 5 To justify Application of robotics in industry. COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. Understand the basics of Robot and its drive system. C02. To Identify the steps involved in controlling system A C03. Demonstrate the various kinematics system used in robots. A C04. Demonstrate the various sensors used in robots. A C05. Apply the robot in day to day applications A MM PROGRAMME OUTCOMES AND PROGRAMME SPECIF OUTCOMES CO1 S M C03 P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 C01 S M M M M S M M C02 S M M M S M M S			
3 The Evaluate the latest technology of sensors used in robotics. 4 To classify the robot kinematics system. 5 To justify Application of robotics in industry. COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. Understand the basics of Robot and its drive system. U CO2. To Identify the steps involved in controlling system A CO3. Demonstrate the various kinematics system used in robots. A CO4. Demonstrate the various sensors used in robots. A CO5. Apply the robot in day to day applications A MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFOUTCOMES M CO1 S M M M S M CO2 P01 P02 P03 P06 P07 P08 P09 P010 P011 P012 PS01 C01 S M M M M S M C02 S S S S S M S M C03 S S S <td></td> <td></td>			
4 To classify the robot kinematics system. 5 To justify Application of robotics in industry. COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. Understand the basics of Robot and its drive system. U CO2. To Identify the steps involved in controlling system A CO3. Demonstrate the various kinematics system used in robots. A CO4. Demonstrate the various sensors used in robots. A CO5. Apply the robot in day to day applications A MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIF OUTCOMES A CO1 S M M M S M CO2 S M M M S M M CO4. PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 CO1 S M M M S M M S M CO3 S S S M M S M			
5 To justify Application of robotics in industry. COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. Understand the basics of Robot and its drive system. U CO2. To Identify the steps involved in controlling system A CO3. Demonstrate the various kinematics system used in robots. A CO4. Demonstrate the various sensors used in robots. A CO5. Apply the robot in day to day applications A MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECTFOUTCOMES COS P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 COS P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 COS P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 <td></td> <td></td>			
COURSE OUTCOMES COURSE OUTCOMES On the successful completion of the course, students will be able to CO1. Understand the basics of Robot and its drive system. U CO2. To Identify the steps involved in controlling system Age CO3. Demonstrate the various kinematics system used in robots. Age CO4. Demonstrate the various sensors used in robots. Age CO5. Apply the robot in day to day applications Age MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIF OUTCOMES COS P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 CO3 P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 CO3 P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 CO3 S			
CO2.To Identify the steps involved in controlling systemACO3.Demonstrate the various kinematics system used in robots.ACO4.Demonstrate the various sensors used in robots.ACO5.Apply the robot in day to day applicationsACO5.Apply the robot in day to day applicationsAMAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIF OUTCOMESCO5P01P0			
CO1.Understand the basics of Robot and its drive system.UCO2.To Identify the steps involved in controlling systemACO3.Demonstrate the various kinematics system used in robots.ACO4.Demonstrate the various sensors used in robots.ACO5.Apply the robot in day to day applicationsAMAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFOUTCOMESCO5P01P01P01P01P01P01P03P06P07P08P09P010P011P012PS01CO5SSMMMMMMLMMMMMMMMMMMMMMMMMMMMMMMMMM <th col<="" td=""><td></td><td></td></th>	<td></td> <td></td>		
CO2.To Identify the steps involved in controlling systemACO3.Demonstrate the various kinematics system used in robots.ACO4.Demonstrate the various sensors used in robots.ACO4.Demonstrate the various sensors used in robots.ACO5.Apply the robot in day to day applicationsAMAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIF OUTCOMESCO5PO1PO1PO1PO1PO1PO1PO1PO1PO2PO3PO6PO7PO8PO9PO10PO11PO12PS01CO5SSSMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM <th c<="" td=""><td></td><td></td></th>	<td></td> <td></td>		
CO3.Demonstrate the various kinematics system used in robots.ACO4.Demonstrate the various sensors used in robots.ACO5.Apply the robot in day to day applicationsAMAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIF OUTCOMESCOSPO1PO1PO1PO1PO1PO1PO1PO1PO2PO3PO6PO7PO8PO9PO10PO11PO12PS01COSPO1PO4PO5PO6PO7PO8PO9PO10PO11PO12PS01COSPO1PO4PO5PO6PO7PO8PO9PO10PO11PO12PS01CO1SMMMMMMCO3SSSSCO3SSSSCO3S <td>Understa</td> <td>erstand</td>	Understa	erstand	
CO4.Demonstrate the various sensors used in robots.ACO5.Apply the robot in day to day applicationsAMAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIF OUTCOMESCOSPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12PS01COSPO1PO2PO3PO6PO7PO8PO9PO10PO11PO12PS01CO1SMMMMMMCO2SMMMMMCO2SMMMMMMCO2SMMMMMMMMMMMMMCO2SMMMM <th c<="" td=""><td>Apply</td><td>ly</td></th>	<td>Apply</td> <td>ly</td>	Apply	ly
CO5.Apply the robot in day to day applicationsApply the robot in day to day applicationsMAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIF OUTCOMESCOSPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12PS01COSPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12PS01CO1SMMMMIIISMCO2SMMSMMMIIISMCO3SSSSMMMIIISMCO3SSSSMMMIIISMCO3SSSSMMMIIISMCO3SSSSMMMIIISMCO4SMMMMIIIIISSCO5SSSSSSSIIIIIIICO5SSSSSSSIIIIIIIIIIICO3SSSS	Apply	ly	
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIF OUTCOMES COS P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012 PS01 C01 S M M L M M M I I S M C01 S M M L M M M I S M C02 S M M S M M I S M C03 S S S M M S S S C04 S M M S S S S S S S C05 S	Apply	ly	
OUTCOMESCOSPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12PS01CO1SMMLMMMIISMCO2SMMSMMMIISMCO3SSSSMMMIIISMCO3SSSSMMMIIISSCO4SMMSMMIIIISSCO5SSSSSSSSIIIIIS	Apply	ly	
CO1 S M M L M M M M S M CO2 S M M S M M M M S M CO2 S M M S M M M M S M CO3 S S S M M M M S	FIC		
CO1 M M L M M M M S M CO2 S M M S M M M M S M CO3 S S S S M M M M S M CO3 S S S M M M M S S CO4 S M M S M M S S S CO5 S S S S S S S S S S	D1 PSO	PSO2 PSC	
CO2 M M S M M M M S M CO3 S S S S M M M M S M CO3 S S S M M M M S S S CO4 S M M S M M S S S CO5 S S S S S S S S S		М	
CO4 S M M S M M S		S	
CO5 S		S	
		S S	
	<u> </u>	3	
SYLLABUS			
INTRODUCTION :			

Robot anatomy-Definition, law of robotics, History and Terminology of Robotics-Accuracy and repeatability of Robotics-Simple problems Specifications of Robot-Speed of Robot-Robot joints and links-Robot classifications-Architecture of robotic systems-Robot Drive systems Hydraulic, Pneumatic and Electric system Functions – Need for Robots – Different Applications.

END EFFECTORS AND ROBOT CONTROLS:

Mechanical grippers-Slider crank mechanism, Screw type, Rotary actuators, cam type-Magnetic grippers-Vacuum grippers-Air operated grippers-Gripper force analysis-Gripper design-Simple problems-Robot controls-Point to point control, Continuous path control, Intelligent robot-Control system for robot joint-Control actions, Adaptive control.

ROBOT KINEMATICS:

Forward kinematics – Inverse kinematics – Differences: Forward kinematics and Reverse kinematics of manipulators with two and three degrees of freedom (In 2 dimensional), four degrees of freedom (In 3 dimensional) – Deviations and problems.

ROBOT SENSORS:

Sensor -principles and applications of the following types of sensors – Position of sensors (Piezo electric sensor, LVDT, Resolvers, Optical encoders, Pneumatic position sensors) – Range sensors (Triangulation principle, Structured, Lighting approach, Time of flight range finders, Laser range meters) – Proximity sensors (Inductive, Hall effect, Capacitive, Ultrasonic and Optical proximity sensors) – Touch sensors (Binary sensors, Analog sensors) – Wrist Sensors – Compliance Sensors – Slip Sensors.

INDUSTRIAL APPLICATIONS :

Application of robots in machining - Welding - Assembly - Material handling - Loading and unloading - CIM - Hostile and remote environments.

TEXT BOOKS:

1	K.S. Fu, R.C. Gonzalez, C.S.G. Lee, "Robotics – Control Sensing, Vision and Intelligence", Tata McGraw-Hill Education.
2	Mikell P Groover & Nicholas G Odrey, Mitchel Weiss, Roger N Nagel, Ashish Dutta,
	Industrial Robotics, Technology programming and Applications, McGraw Hill, 2012
REFE	ERENCES:
1	Kozyrey, Yu "Industrial Robotics" MIR Publishers Moscow

T	Kozyrey, Fu. madstriar Roboties with Fubisiters Woseow.
2	Richard D.Klafter, Thomas A. Chmielewski and Michael Negin, "Robotic Engineering-An
	Integrated Approach", Prentice Hall Inc, Englewoods Cliffs, NJ, USA

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID		
1	G.ANTONY CASMIR	Asst. Prof II	Mechanical, AVIT	antonycasmir@avit.ac.in		
2	J.SANTHOSH	Assistant Professor	Mechanical/V MKVEC	santhosh@vmkvec.edu.in		

17MEE	C13	1	ΙΝΠΙ	ISTR	TAT. 9	SAFE'	гу	Ca	ategor	y 1	L	Т	Р	Cre	edit
				JOIN		JAT L	11	Ε	C(PS))	3	0	0		3
Preamble Fo familia aspects an Prerequi	arize w nd varie		-			-		-		ıstrial	enviro	nment i	ncludin	g the sa	afety
NIL	site														
Course C)bjecti	ve													
1 To	underst	tand a	bout	safety	/ man	ageme	nt an	d und	erstan	d all tl	ne safe	ty aspec	ets thore	oughly.	
2 of d	ifferen	t type	s of 1	machi	nes.				_			llowed	_	_	
										edge o	of hand	dling th	e diffe	rent typ	pes o
То	ipment analyze									pertis	e for e	mergen	cy situa	ations a	risin
⁴ due	to acci	idents	and	monit	oring	of hea	lth a	spects	5.						
5 To a	analysi	s of th	ne va	rious	laws 1	regardi	ing he	ealth i	ssues	and sa	fety of	fperson	als.		
Course C	Outcom	nes: C)n th	e suco	cessfu	l com	pletio	on of	the co	urse,	studen	ts will	be able	to	
CO1.	Explai	in the	safet	y con	cepts	and ro	ole of	safety	y mana	ageme	nt.		Understand		
CO2.	Discuss various safety aspects associated with operational safety of equipments like boilers, pressure vessels and other machineries used in workshop.									•	Understand				
CO3.	Apply indust	vario rial sa	ous sa fety.	•							pect to		Apply	ý	
CO4.	Illustra implei			ious s	trateg	ies to j	preve	ent acc	cidents	s and			Analy	/ze	
CO5.		e the	imple				-			the va	arious	laws	Analyze		
Mapping	with l	Progr	amm	ne Ou	tcom	es and	Pro	gram	me Sp	ecific	Outco	omes			
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO
CO1	S	L	L	L	-	-	-	-	-	-	-	-	L	-	-
CO2	S	L	L	L	-	-	-	-	-	-	-	-	L	_	-
CO3	103 S M M L			-	-	-	L	-	-						
CO4	4 S M M L						L	-	-						
CO5	S	М	М	L	-	-	-	-	-	-	-	-	L	-	-
S- Strong;	M-Med	lium; I	L-Low	7		<u> </u>		I	<u> </u>		<u> </u>	1	1	l	I
SYLLAB	BUS														
YLLAB	005														

UNIT I - SAFETY MANAGEMENT

Evaluation of modern safety concepts - Safety management functions – safety organization, safety department – safety committee, safety audit - performance measurements and motivation - employee participation in safety - safety and productivity.

UNIT II: OPERATIONAL SAFETY

Hot metal Operation - Boiler, pressure vessels - heat treatment shop - gas furnace operation – electroplating-hot bending pipes -Safety in welding and cutting. Cold-metal Operation – Safety in Machine shop - Cold bending and chamfering of pipes - metal cutting –shot blasting, grinding, painting - power press and other machines

UNIT III: SAFETY MEASURES

Layout design and material handling - Use of electricity - Management of toxic gases and chemicals - Industrial fires and prevention - Road safety - highway and urban safety – Safety of sewage disposal and cleaning - Control of environmental pollution - Managing emergencies in Industries - planning, security and risk assessments, on- site and off site. Control of major industrial hazards.

UNIT IV: ACCIDENT PREVENTION

Human side of safety - personal protective equipment - Causes and cost of accidents. Accident prevention programs -Specific hazard control strategies - HAZOP - Training and development of employees - First Aid- Fire fighting devices - Accident reporting, Investigation.

UNIT V SAFETY, HEALTH, WELFARE & LAWS

Safety and health standards - Industrial hygiene - occupational diseases prevention – Welfare facilities - History of legislations related to Safety-pressure vessel act-Indian Boiler act - The environmental protection act - Electricity act - Explosive act.

Text	Books							
1	Krishnan N.V. "Safety Management in Industry" Jaico Publishing House							
2	Handlin.W, "Industrial Hand Book", McGraw-Hill, 2000.							
Refe	rence Books							
1	Heinrich.H.W, "Industrial Accident Prevention", McGraw-Hill, 1980.							
2	Rudenko.N, "Material Handling Equipments", Mir Publishers, Moscow, 1981.							
3	Lees.F.P, "Loss "Prevent	ion in Process	Industries", Butterv	vorths, New Delhi, 1986.				
4	Accident Prevention Mar	ual for Indust	rial Operations",N.S	.C.Chicago, 1982				
Cou	rse Designers							
S.No	Faculty Name	Designation	Department/Na me of the College	Email id				

-	S.DURAI	ΓHILAGAR A	SSO.PROF	MECH/VMKVEC	duraithilagar@vmkvec.edu.in
2	C.Thygarajan		JP II	Mech/AVIT	Thygararajan@avit.ac.in

17MEEC18	ADVANCED IC	Category	L	Т	Р	Credit
	ENGINES	EC(PS)	3	0	0	3

Preamble

Upon completion of this course the students can be able to compare the operation of different IC engines and the components and can evaluate the pollutant formation- control and also about the different Alternative fuels available along with the recent trends developed in the Automobile engines.

Prerequisite THERMAL ENGINEERING (17MECC07)

Course Objective

1	To learn about the combustion phenomenon in spark ignition engines.
2	To learn about the combustion phenomenon in compression ignition engines and
_	Turbocharger.
3	To learn the causes, effects and control of pollutants from an Internal Combustion
5	engine.
4	To provide the knowledge of alternate fuels in Internal Combustion engines.
5	To impart the knowledge on recent developments in Internal Combustion engines.
Э	ro impart the knowledge on recent developments in internal combustion engines.

Course Outcomes: On the successful completion of the course, students will be able to

CO1.	Retrieve the knowledge of engine operation and performance	Remember
CO2.	Examine the combustion phenomenon of SI and CI engine and auxiliary systems.	Understand
CO3.	Illustrate the recent developments in Internal Combustion engines	Understand
CO4.	Distinguish the causes, effects and control of pollutants from an IC engine.	Understand
CO5.	Identify the uses of alternate fuels in Internal Combustion engines.	Apply

Mapping with Programme Outcomes and Programme Specific Outcomes

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PS O3
CO1	S	L	-	-	-	-	-	-	I	-	-	-	S	-	-
CO2	S	L	L	-	-	-	-	-	I	-	-	-	S	-	-
CO3	S	L	L	-	-	-	-	-	-	-	-	-	S	-	-
CO4	S	М	L	L	-	-	-	-	-	-	-	-	S	-	-
CO5	S	S	М	L	-	-	-	_	-	-	_	-	S	-	-
S- Stro	S- Strong; M-Medium; L-Low														

SPARK IGNITION ENGINES

Mixture requirements – Fuel injection systems – Monopoint, Multipoint & Direct injection – Stages of combustion – Normal and Abnormal combustion – Knock – Factors affecting knock – Combustion chambers.

COMPRESSION IGNITION ENGINES

Diesel Fuel Injection Systems – Stages of combustion – Knocking – Factors affecting knock – Direct and Indirect injection systems – Combustion chambers – Fuel Spray behaviour – Spray structure and spray penetration – Air motion – Introduction to Turbocharging.

POLLUTANT FORMATION AND CONTROL

Pollutant – Sources – Formation of Carbon Monoxide, Unburnt hydrocarbon, Oxides of Nitrogen, Smoke and Particulate matter – Methods of controlling Emissions – Catalytic converters, Selective Catalytic Reduction, NOx Adsorbers and Particulate Traps – Methods of measurement – Emission norms and Driving cycles.

ALTERNATIVE FUELS

Alcohol, Hydrogen, Compressed Natural Gas, Liquefied Petroleum Gas and Bio Diesel – Properties, Suitability, Merits and Demerits – Engine Modifications.

RECENT TRENDS

Lean Burn Engine, Air assisted Combustion, Homogeneous charge compression ignition engines – Variable Geometry turbochargers – Common Rail Direct Injection Systems – Hybrid Electric Vehicles –GDI Engine– Onboard Diagnostics.

Text Books

1	Ramalingam. K.K., "	Internal Com	bustion Engine Fund	lamentals", Scitech Publications,								
2	Ganesan, "Internal C	ombustion E	ngines", II Edition, T	MH.								
Refere	rence Books											
1	Mathur. R.B. and R.P. Sharma, "Internal Combustion Engines"., Dhanpat Rai & Sons.											
2	Duffy Smith, "Auto Eric Chowenitz, "Au		,	Willcox Company, Inc., 1987. 3. cations.								
Cours	e Designers											
S.No	Faculty Name	Designati on	Department/Na me of the College	Email id								
1	S.SANGEETHA Associate MECH./ AVIT sangeethas@avit.ac.in Professor											
2	R.CHANDRASEKAR	Assistant Professor	MECH / VMKVEC	chandrasekar@vmkvec.edu.in								

17MF	SF37		CO	MPOS	ITF M	лтер	TATE			(Categor	y L	Т	Р	C
1 / 1911	25E32			WII 05		AILN	IALS			1	EC(PS)	3	0	0	3
PREA	MBL	Æ													
This c	ourse	review	vs the	various	compo	site ma	terials	their	proc	essing t	echniqu	ies and	l their	behavio	ors,
and to	devel	op mo	dels a	nd their	applica	ations i	n aero	ospace	, auto	motive	and me	dical f	ields		
PREF	KEQU	ISITE	2 - NII	<u>.</u>											
COU	RSE ()BJE(CTIV	ES											
1 U	Jnders	tand a	bout I	Fibre rei	nforced	l Plasti	cs								
2 U	nderst	and th	e man	ufacturi	ng pro	cesses	of the	comp	osite n	naterial	8				
3 A	Analys	e abou	t maci	o mech	anical b	oehavio	or of F	RP							
4 A	Analys	e abou	t micr	omecha	nical b	ehavio	r of co	mpos	ite mat	terials					
5 U	nderst	and ab	out m	aterial r	nodels	of com	posite	S							
COU	RSE (OUTC	OME	S											
On the	e succ	essful	compl	etion of	the co	urse, st	udents	s will l	be able	e to					
CO1 .	Under	stand	the ty	pes of re	einforce	ements	and fi	ibers u	sed in	compo	site ma	terials		Underst	and
CO2.	Under	stand	variou	s manuf	facturin	g tech	niques	in co	nposit	e manu	facturir	ıg		Underst	and
CO3.	Anal	yse th	e mac	cro mecl	nanical	behav	vior of	f Fiber	Reinf	orced I	Plastics			Analyze	e
CO4 .	Ana	lyse t	he Mi	cro mec	hanical	behav	vior of	Fibe	r reinf	orced p	lastics			Analyze	2
CO5.	Appl	y moc	lels fo	r solvin	g the co	omposi	te mat	erial r	nanufa	acturing	ç			Apply	
													L		
COS	PO	PO	PO	PO4	PO5	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSC
000	1	2	3	101	1 00	6	7	8	9	0	1	2	1	2	3
CO1	S	-	L	-	-	М	S	-	-	-	-	-	L	-	
CO2	S	-	L	-	-	L	S	-	-	-	-	-	L	-	-
CO3	S	S	S	S	L	L	S	-			_	-	S	-	S
									-	-	-	-			
CO4	S	S	S	S	L	L	S	-	-	-	-	-	S	-	S
CO5	S	S	S	S	S	L	-	-	-	-	-	-	S	-	S
S- Str	ong N	I-Med	lium	L- Low	7			<u> </u>				1			<u> </u>
Syllat	-														
U) PLAS											

FIBRE REINFORCED PLASTICS (FRP)

Definition; Types; General properties and characteristics; Reinforcing materials - particles, fibers,

whiskers; Properties of reinforcing materials; Matrix materials; Additives; Properties of FRP materials; Applications

MANUFACTURING PROCESSES

Open mold processes – Hand layup, Spray up, Vacuum bag, Pressure bag & autoclave, Centrifugal

casting, Filament winding; Closed mold processes – Compression molding, Resin transfer molding (RTM), Injection molding, Pultrusion; SMC & DMC products, etc.

MACROMECHANICAL BEHAVIOR OF FIBRE REINFORCED PLASTICS

Design variables; Selection of fiber-matrix and manufacturing process; Effects of mechanical, thermal,

electrical and environmental properties, Fiber orientation, Symmetric and asymmetric structure; Effects of

unidirectional continuous and short fibers; Lamination theory; Failure theories.

MICROMECHANICAL BEHAVIOR OF FIBRE REINFORCED PLASTICS

Strengthening methods, Elasticity of fibre composites, Plasticity and fracture of composites, Crack

propagation in fibre composites, Failure under compressive loads.

MATERIAL MODELS

Law of Mixtures, Shear lag model, Laminated plate model, Eshelby's models, Other models.

Text Books:

1. Haslehurst.S.E., "Manufacturing Technology ", ELBS, London.

2. Krishnan K. Chawle. "Composite Material: Science and Engineering" Second Edition, Springer.

Reference:

1.. T.W.Clyne, P.J. Withers, "An Introduction to metal matrix composites", Cambridge University Press.

2. F.C. Campbell "Structural Composite Materials", Materials Park, ASM International, 2010

S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1	Dr.D.Bubesh Kumar	Associate Professor	Mechanical/ AVIT	bubeshkumarmech@gmail.com
2.	J.Santhosh	Assistant Professor	Mechanical/VMKV EC	santhosh@vmkvec.edu.in

171/	ESE4	0	INSI	PECTI	ON AI	ND STA	ATIST	TICAI	4	Categ	ory	L	Т	Р	Credit
1/101	LOL4	U		QUA	LITY	CONI	ROL			EC(S	SE)	3	0	0	3
PREA	MBL	Æ													
The of	moft	hic cu	bioot is	to und	orston	d tha in	nooti	on and	statist	ical au	ality con	trol co	nconte		
The al		ills su			erstand		specific		statist	lcai qu	ality con		ncepts.		
PREF	REQU	ISITH	E – NII												
COU	RSE C)BJE(CTIVI	ES											
1	Τοι	unders	tand th	ne vario	us insp	pection	princij	ples							
2	То а	apply (the imp	oortanc	e of Qı	ality in	indus	try							
3	To a	pply t	he fund	damenta	als of s	tatistica	al conc	ept in	qualit	y contr	ol				
4	To a	nalyze	e the pl	nenome	non of	various	s conti	ol cha	rts						
5	To a	pply t	he OC	curves	and ab	out the	sampl	ing in	spectio	on					
							-		-						
COU	RSE C	OUTC	OME	8											
On the		essful	compl	etion of	f the co	ourse, st	udents	s will ł	ne able	e to					
			-					, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					X X X	. 1	
COI.	Under	stand	the pri	nciples	of ins	pection.							Unders	tand	
CO2.	Identi	fy the	quality	y syster	n in in	dustry.							Apply		
CO3.	Identi	fy the	variou	s contro	ol char	ts.							Apply		
CO4 .	Analy	ze the	OC ci	irves ar	nd the s	samplin	g insp	ection					Analyz	e	
CO5.	Apply	vario	us san	pling to	echniq	ues							Apply		
						outra				CD ()					
	PING	PO	PO	JGKAI	PO		PO	PO	PRO	PO1	INE SP	PO1	COUT		
COS	1	2	3	PO4	5	PO6	7	8	9	0	PO11	2	PSO1	PSO2	PSO3
CO1	М	М	L	L	-	-	-	-	-	-	-	-	L	-	-
CO2	М	М	L	L	-	-	-	-	-	-	-	-	L	-	-
	S	L	М	L	-	-	-	-	-	-	-	-	L	-	-
CO3		L	L	L	-	-	-	-	-	-	-	-	L	-	-
CO3 CO4	S	L	_					1	1	1	1	1	L		

INSPECTION: Introduction and Definition of Inspection, Principle of Inspection, Floor Inspection - advantages and disadvantages.

QUANTITY FUNCTION IN INDUSTRY:

Introduction, definition of quality, basic concept of quality, Quality of design, conformance and performance. Factors affecting quality, Concept of reliability and maintainability, definition of SQC, benefits and limitation of SQC.

FUNDAMENTALS OF STATISTICAL CONCEPT IN QUALITY CONTROL:

Variation in process causes of variation, Types of quality characteristics: variable, attribute and variable treated as attribute, Terminology used in frequency distribution, Graphical presentation of frequency distribution (Histogram, Frequency Bar Chart, and Frequency Polygon), Normal distribution Curve - Description and its construction.

CONTROL CHARTS IN S.Q.C.:

Theory of control chart- uses of control chart – Control chart for variables – X chart, R chart and σ chart -process capability – process capability studies and simple problems. Control chart for attributes -p chart, C and U charts, State of control and process out of control identification in charts, pattern study.

SAMPLING INSPECTION & OC CURVES

Lot by lot sampling – types – probability of acceptance in single, double, multiple sampling techniques – O.C. curves – producer's Risk and consumer's Risk. AQL, LTPD, AOQL concepts-standard sampling plans for AQL and LTPD- uses of standard sampling plans.

TEXT BOOKS:

- 1. Douglas.C. Montgomery, "Introduction to Statistical quality control", 4th edition, John Wiley 2001.
- 2. Srinath. L.S., "Reliability Engineering", Affiliated East west press, 1991.
- 3. R K Jain, "Engineering Metrology", Khanna Publishers.

REFERENCES:

- 1. John.S. Oakland. "Statistical process control", 5th edition, Elsevier, 2005
- 2. Connor, P.D.T.O., "Practical Reliability Engineering", John Wiley, 1993
- 3. Grant, Eugene .L "Statistical Quality Control", McGraw-Hill, 1996
- 4. Manohar Mahajan, "Statistical Quality Control", Dhanpat Rai & Sons, 2001.

COURSE DESIGNERS

S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1	G.ANTONY CASMIR	Asst. Prof II	Mechanical, AVIT	antonycasmir@avit.ac.in
2	J.Rabi	Associate Professor	Mechanical/VM KVEC	rabi@vmkvec.edu.in

17	MESE	02		CONS	ENE SERVA	RGY		D	Cat	egory	L	1	Т	Р	Cre	edit	
1/1	VILSE	02						D	EC	(SE)	3		0	0		3	
		the su	ubje	ect is to	o provi	ide ba	sic kn	owled	dge of	energ	gy cons	sumptio	on, utiliz	ation a	nd ener	. ду	
Prer	equisi	te : N	IL														
Cou	rse Ob	jecti	ve														
1	To co	mpar	e th	ne ener	gy con	isump	tion d	etails	world	lwide	•						
2	Analy	zing	and	l interp	pretatio	on of e	energy	v data	in inc	lustrie	es.						
3	Carry	ing o	ut e	energy	accour	nting	and ba	lanci	ng.								
4	Cond	ucting	g er	nergy a	udit aı	nd sug	ggest n	netho	dolog	ies fo	r energ	y savir	igs in va	rious e	quipme	ent.	
5	To ut	ilize t	he	availał	ole ene	rgy re	esourc	es in o	optim	al way	ys.						
Cou	rse Ou	tcom	es:	On th	e succ	essfu	l comj	pletio	on of t	he co	urse, s	tudent	s will be	e able t	0		
CO1		-			ledge o energy			conc	epts c	of Ene	rgy sce	enario,	energy	U	ndersta	nd	
CO2	. To	under	stai	nd the	metho	ds of I	Electri	ic ma	nagen	nents,	Lighti	ngs		Uı	ndersta	nd	
CO3		apply lator		conce	epts of	boile	er testi	ng, st	eam d	listrib	ution &	therm	al		Apply		
CO4		apply rigera			iques f	for En	ergy c	consei	rvatio	n in p	umps, t	fans an	d		Apply		
CO5				the tec of Ret		es for	payba	ck pe	riod, e	energy	y mana	gement	t &	ŀ	Analysi	s	
Мар	ping v	vith H	Prog	gramn	ne Ou	tcome	es and	Prog	grami	ne Sp	ecific	Outcor	nes				
CO	PC	P P 2		PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO 3	
CO		I		L	L	-	-	-	_	-	-	-	-	L	-	-	
CO2	2 S	I	<u>_</u>	L	L	-	-	-	-	-	-	-	-	L	-	-	
COS	3 S	N	1	М	М	-	-	-	-	-	-	-	-	L			
CO4	4 S	N	1	Μ	М	-	-	-	-	-	-	-	-	L	-	-	
COS	5 S	N	1	М	М	-	-	-	-	-	-	-	-	L	-	-	
S- St	rong;	M-M	ledi	ium; I	L-Low												

IMPORTANCE OF ENERGY CONSERVATION AND MANAGEMENT

Energy-Power – Past & present scenario of World; National Energy consumption data– environmental aspects – Energy prices, policies – Energy auditing: Need, Types, methodology and analysis. Role of energy managers. Instruments used for auditing.

ELECTRICAL SYSTEMS

AC / DC current systems, Demand control, power factor correction, load management, Motor drives: motor efficiency testing, Variable frequency drives – Lighting: lighting levels, efficient options, day lighting, timers, Energy efficient windows – Advanced fuel cell technology

THERMAL SYSTEMS

Boiler – efficiency testing, excess air control, Steam distribution & use – steam traps, condensate recovery, flash steam utilization, Thermal insulation and refractories. Thermic fluid heaters.

ENERGY CONSERVATION

Energy conservation in Pumps, Fans (flow control) and blowers, Compressed Air Systems, Refrigeration and air conditioning systems – Waste heat recovery recuperators, heat sheets, heat pipes, heat pumps

ENERGY MANAGEMENT & ECONOMICS

Energy resource management – Energy Management information systems – Computerized energy management – Energy economics – discount rate, payback period, internal rate of Return, life cycle costing – Financing energy conservation Projects.

TEXT BOOKS

	L.C. Witte, P.S. Scl	hmidt, D.R. Brov	wn, Industrial Energy	Management and Utilisation,									
1	Hemisphere Publica	ations Washing	on	C .									
1	riemsphere r doned		.011.										
2	O. Callaghn, P.W. l	Design and Man	agement for Energy C	Conservation, Pergamon Press,									
2	Oxford												
Refere	ence Books	ce Books											
1	Dryden IGC The	Efficient Use of	f Energy, Butterworth	ne London									
1	Di yueli, I.O.C. The	Efficient Use of	Energy, Dutter worth	is, London									
2	Turner, W.C. Energ	gy Management	Hand Book, Wiley, N	lew York.									
3	Murphy, W.R. and	Mc KAY, G. E	nergy Management, E	Butterworths, London									
Course	e Designers												
		ASSOCIATE	Mechanical/	anandan@vmkvec.edu.in									
1	R.ANANDAN	PROFESSOR	V.M.K.V										
-			Engineering College										
			Lingineering Conege										
2	R.MAHESH	ASSISTANT	Mechanical/AVIT	mahesh@avit.ac.in									
_		PROFESSOR											
		(GR-II)											

1784	ESE0	2	НУ	DROG	GEN A	ND FU	EL C	ELL		Catego	ry	L	Т	Р	Credit
1 / 181	LSLU	5		T	ECHN	OLOG	Ϋ́			EC(SE	E)	3	0	0	3
PREA	MBL	E											L		L
				techno y requir			cement	ts, bene	fits ar	nd prosj	pects o	f utilizi	ng hydro	gen/fuel	cell for
PREF	REQU	ISITE	E												
	-		INEER	ING											
COU	RSE C	BJE	CTIVE	ES											
1	To st	udy o	n the h	ydroge	n prod	uction 1	nethod	lologies	s, poss	ible app	olicatio	ns and	various st	torage of	ptions.
2	To di	iscuss	on the	workin	ng of a	typical	fuel c	ell and	to elat	orate o	n its th	ermody	namics a	nd kinet	ics.
3	To m	nake s	tudents	s unders	stand th	ne diffe	rent fu	el cells	and th	neir app	licatio	ns.			
4	To a	nalyze	e the co	ost effec	ctivene	ss and e	eco-fri	endline	ss of F	Fuel Cel	ls.				
COU	RSE C	OUTC	OMES	5											
On the	e succe	essful	comple	etion of	the co	urse, st	udents	will be	able t	to					
CO1.	Retrie	ve hy	drogen	proper	ties and	d its the	ermody	ynamic	perfor	mance.			Remem	nber	
CO2.	Know	n the]	Hydrog	gen pro	duction	n and w	orking	g of fuel	cells.				Underst	and	
CO3.	Know	n the	differe	nt types	of fue	l cells a	and the	eir appli	ication	IS.			Underst	and	
CO4 .	Analy	ze the	cost e	ffective	ness a	nd eco-	friendl	iness o	f fuel o	cells.			Analyz	e	
MAP	PING	WIT	H PRO	OGRAN	AME (OUTC	OMES	S AND	PROC	GRAMI	ME SP	ECIFI	C OUTC	OMES	
COS	PO 1	PO 2	PO 3	PO4	PO 5	PO6	PO 7	PO8	PO 9	PO1 0	PO1 1	PO1 2	PSO1	PSO 2	PSO3
CO1	S	М	L	L	-	-	-	-	-	-	-	-	L	-	-
CO2	S	М	L	М	_	_	-	-	-	-	-	-	М	_	М

S- Strong; M-Medium; L-Low

S

Μ

М

S

CO3

CO4

Μ

S

Μ

Μ

L

Μ

_

Μ

_

S

_

_

_

_

_

_

_

Μ

_

_

SYLLABUS

HYDROGEN – BASICS AND PRODUCTION TECHNIQUES: Hydrogen – physical and chemical properties, salient characteristics. Production of hydrogen – steam reforming – water electrolysis – gasification and woody biomass conversion – biological hydrogen production – photo dissociation – direct thermal or catalytic splitting of water.

S

S

_

Μ

Μ

Μ

HYDROGEN STORAGE AND APPLICATIONS: Hydrogen storage options – compressed gas – liquid hydrogen – Hydride – chemical Storage – comparisons. Safety and management of hydrogen. Applications of Hydrogen.

FUEL CELLS: History – principle - working - thermodynamics and kinetics of fuel cell process – performance evaluation of fuel cell – comparison on battery Vs fuel cell.

FUEL CELL – TYPES: Types of fuel cells – AFC, PAFC, SOFC, MCFC, DMFC, PEMFC – relative merits and demerits.

APPLICATION OF FUEL CELL AND ECONOMICS: Fuel cell usage for domestic power systems, large scale power generation, Automobile, Space. Economic and environmental analysis on usage of Hydrogen and Fuel cell. Future trends in fuel cells.

TEXT BOOKS:

- 1. Viswanathan, B and M Aulice Scibioh, Fuel Cells Principles and Applications, Universities Press (2006)
- 2. Rebecca L. and Busby, Hydrogen and Fuel Cells: A Comprehensive Guide, Penn Well Corporation, Oklahoma (2005).
- 3. Bent Sorensen, Hydrogen and Fuel Cells: Emerging Technologies and Applications, Elsevier, UK (2005).

REFERENCES:

- 1. Kordesch, K and G.Simader, Fuel Cell and Their Applications, Wiley-Vch, Germany (1996)
- 2. Hart, A.B and G.J.Womack, Fuel Cells: Theory and Application, Prentice Hall, New York Ltd., London (1989)
- 3. Jeremy Rifkin, The Hydrogen Economy, Penguin Group, USA (2002).

3.

COURSE DESIGNERS

000							
S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID			
1	R.CHANDRASEKAR	HANDRASEKAR Assistant Professor		chandrasekar@vmkvec.edu.in			
2	N.SHIVAKUMAR	Assistant Professor	MECH / AVIT	shivakumar@avit.ac.in			

17MES	F16		wo	ORK D	ESIG	N AN	D	Ca	ategory	y	L	Т	Р	Cre	edit		
I / IVIL'S	L-40		ERGONOMICS				Ε	C(SE))	3	0	0	3				
Preamb This cou used in t	ırse is d	•							•	and E	rgonon	nics, which	ch are b	oth			
Prerequ																	
Course	Object	ive															
1 Id	lentify h	nazard	s (erg	onomi	c in na	ture)	which	are lik	ely to	cause	occupat	ional illn	lesses of	r injurie	s.		
2 ^{In}	ndicate design and redesign tasks and workstations to fit employees.																
3 A	Apply the knowledge, skills and abilities into an industrial based problem.																
4 ^E	Develop	and u	se of l	numan	factor	data											
5 U	Jndersta	ind ab	out hu	ıman b	ody st	ructur	e and	function	ons.								
Course	Outcor	nes: (On the	succe	essful	compl	etion	of the	cours	e, stud	ents wi	ll be abl	e to				
CO1.	under	stand	accura	ately re	ecogni	zing a	nd eva	aluatin	g haza	rds			Under	stand			
CO2.	under	stand	and re	edesigr	n of ta	sks an	d worl	sstatio	ns to fi	t empl	oyees		Understand				
CO3.	Apply	the sl	kills ir	ı solviı	ng ind	ustrial	based	l probl	ems				Apply	Apply			
CO4.	apply	the k	nowle	dge an	d deve	eloping	g to us	sed hui	nan fa	ctor da	ta		Apply				
CO5.	Under	stand	huma	n bod	y struc	ctures a	and fu	nction	s				Understand				
Mappin	g with	Prog	ramm	e Out	comes	and I	Progra	amme	Specif	ic Out	comes						
СО	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO 3		
CO1	S	L		L			L		_				L		L		
CO2	S	М											L		L		
CO3	S	S	М	М									М		L		
CO4	S	S	М	М									М		М		
CO5	S	М		М	М		L						L		S		
S- Stroi	ng; M-N	Aediu	ım; L-	Low													

METHOD STUDY

Various recording techniques like outline process charts, flow process charts, man machine charts, two handed process charts. String diagram, flow diagram, multiple activity chart, simo, cyclo-graphs and chrono-cyclographs; critical examination, development, installation and maintenance of improved method

WORK MEASUREMENT

Introduction & definition, objectives and basic procedure of work measurement; application of work measurement in industries; Time study: basic procedure, equipment needed and methods of measuring time, selection of jobs, breaking a job into elements; numbers of cycles to be timed.

JOB EVALUATION AND INCENTIVE SCHEMES

Starlight line, Tailor, Merrick and Gantt incentive plans. Standard data system; elemental & non-elemental predetermined motion system, work factors system Methods Time Measurement (MTM), MOST

HUMAN FACTOR ENGINEERING

Definition and history of development of human factors engineering, Types & characteristics of manmachine-system. Relative capabilities of human being and machines; development and use of human factor data; information input and processing.

HUMAN PHYSICAL DIMENSION CONCERN

Human body- structure and function, anthropometrics. Anthropometry: body growth and somatotypes. Static and dynamic anthropometry, Stand Posture, Anthropometry landmark: Sitting postures, squatting and cross-legged postures

Text Books

1	M. P. Goover, Work Prentice Hall	Systems and the I	Methods, Measurement and	d Management of Work, Pearson							
2	Khan MI; Industrial Ergonomics; PHI Learning										
Refe	ence Books										
1	B. Niebel and Freivalds, Methods standards and Work Design, McGraw-Hill, 2003										
2	Sandera M and Mc Cormick E; Human Factors in Engg and design; MGHill										
3	Currie RM; Work stud	y; BIM publicati	ons								
Cour	se Designers										
S. No	Faculty Name	Designation	Department/Name of the College	Email id							
1	N. Fedal Castro	Asst. Prof	Mechanical / AVIT	fedal@avit.ac.in							
2	J.Rabi	Associate Propfessor	Mechanical/VMKVEC	rabi@vkmvec.edu.in							

171/	ESE18		МЕТА	L FO	RMIN	NG AN	JD	Cat	egory	L	1	Т	Р	Cr	edit
1/10	LSEI)	JOI	NING	PRO	CESS		(CC	3		0	0		3
extend analys weldir	is cours led to	theory studie Illurgy	and a d in d	applica etail a	tions nd als	of me so the	etal f stud	formir ents c	ng. Va can ur	arious	metal	in mec forming process	g proce	sses an	d their
	e Obje	ective													
1	Го Асq	uire ba	asic kn	owledg	ge on	fundan	nenta	als of	meta	l formi	ng				
2	To Understand the various forming processes and its application														
3	To Acquire basic knowledge on metal joining processes														
4	To Understand the various metal joining processes and its application														
5	Го Und	lerstan	d the v	velding	g of al	loy ste	els a	nd no	n-ferr	ous me	tals				
Cours	e Outo	comes	: On th	ne succ	essfu	l comp	oletio	on of t	the co	urse, s	tudent	s will b	e able t	to	
CO1.	Expla	in bas	sic kno	wledge	e on fi	undame	ental	s of 1	netal	formin	g		U	Indersta	ind
CO2.	Expla	in the	variou	s form	ing pr	ocesse	s and	l its aj	pplica	tion			U	Indersta	ind
CO3.	Apply	y basi	c know	ledge	on me	etal joir	ning	proce	sses					Apply	,
CO4.	Exper	riment	with	various	s meta	l joinir	ng pr	ocess	es and	l its app	olicatio	n		Apply	,
CO5.	Exper	riment	with	the we	lding	of allo	y ste	els an	d non	-ferrou	is meta	ls		Apply	,
Mapp	ing wi	th Pro	gram	ne Ou	tcome	es and	Prog	gramı	ne Sp	ecific	Outcor	nes			
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	М	S									L		
CO2	S		М										М		
CO3	S	L	L	L									S		
CO4	S		М	М									S		
CO5	S	L	L	М									М		
a a.	ng; M-N	Indium				1 1		<u> </u>		I	L	I	1		

FUNDAMENTALS OF METAL FORMING

Fundamentals of metal forming- Effect of temperatures, speed and metallurgical microstructure on forming processes - Mechanics of Metal Forming.

Yield criteria for ductile metals - Flow theories - strain hardening - recrystallization.

METAL FORMING PROCESSES

Forging Processes Forging Equipment, Forging defects - Types of Rolling mill – process variables – defects.

Types of extrusion - Process variables - Wire drawing - Drawing and Deep drawing – Sheet metal working . High energy rate forming processes.

FUNDAMENTALS OF METAL JOINING

Classification of welding processes: Arc welding power sources, power source characteristic curves, flux covering, different types of electrodes and their applications, gas welding and cutting, flame characteristics

METAL JOINING PROCESSES

Gas tungsten arc welding process, electrode polarity, shielding gas, use of pulsed arc welding process; gas metal arc welding, mode of metal transfers, pulsed MIG welding process. Submerged arc welding, advantages and limitations.

Orbital welding of tubes / pipes; Plasma-arc welding process, transferred and non- transferred arc welding and their applications, plasma cutting, surfacing and applications

Working Principle of resistance welding process-spot, seam, projection, upset and flash butt Welding, electro slag and electro gas welding.

Radiant energy welding processes - equipment -electron beam welding (EBW) - laser beam Welding (LBW) - applications of EBW and LBW- Friction Steel Welding.

WELDING OF ALLOY STEELS AND NON-FERROUS METALS

Welding of stainless steels, types of stainless steels, overview of joining ferritic and martensitic types, welding of austenitic stainless steels, Sensitisation, hot cracking, sigma phase and chromium carbide formation, ways of overcoming these difficulties, welding of cast iron. Welding of non-ferrous materials: Joining of aluminium, copper, nickel and titanium alloys, problems encountered and solutions. Defects in welding. Introduction to International Standards and Codes

Text Books

- 1. Narayanasamy, R., "Metal forming technology"2nd Edition, Ahuja Pub.
- 2. R. S.Parmar, "Welding Engineering and Technology" 2nd edition M/s. Khanna Publishers.

Reference Books

- 1. George E.Dieter, "Mechanical Metallurgy",1 edition McGraw Hill book Co.- Koga,.
- 2. William F Hosford and Robert M Caddell "Metal Forming Mechanics and Metallurgy" Third Edition, Cambridge University Press.
- 3. ASM Handbook on Forming and Forging, Vol.14, 9th Edition ,ASM International
- 4. Baldev Raj, Shankar V, Bhaduri A K". Welding Technology for Engineers" Narosa Publications.

5. "AWS Welding Hand book", 9th edition, Vol-1,"Welding Science and Technology".

Course Designers
Edition,AWS.
7. Kearns W. H, "Welding Hand Book (Welding Processes)", Volume II and III, 7 th
6. Nadkarni S.V., "Modern Arc Welding Technology", 1 st Edition, IBH Publishing.

Cours	e Designers			
S.No	Faculty Name	Designation	Department/ Name of the College	Email id
1	S.ASHOKKUMAR	Asst.Professor G-II	Mech / Avit	ashokkumar@avit.ac.in

17ME	SE42		DESI	GN FO	R QU	ALITY	ζ		tegory C(SE)	L 3		T 0	P 0	C 3	-
PREA	MBL	E							.(5E)	3		U	0	5	-
			the st	atistica	l techn	iques.	designi	ng vari	ous exi	periment	s and s	pecial ex	perimer	its and	
optimi	zation	technie	ques				8				~ ~]	[]	L		
	-	ISITE:													
COUR	SE OI	BJECT	IVES												
1	Understand about Design principles and analysis of statistical techniques														
2	Apply single factor & multi factorial experiments														
3	Anal	yze fac	torial c	lesigns											
4	Analyze the Selection of orthogonal arrays														
5	Appl	y the Pi	rinciple	es of ro	bust de	sign									1
COUR	SE O	UTCOI	MES												1
On the	succe	ssful co	omplet	ion of t	he cour	rse, stu	dents v	will be a	able to						-
CO1	Under	stand tl	he the	various	statisti	cal tec	hnique	S			U	Jnderstar	ıd		-
CO2.	Desig	gn and a	apply s	ingle fa	actor &	multi	factoria	al expe	iments		A	Apply			
CO3.	Analy	se the	special	l desigr	ns in fa	ctorial	experii	ments				Analyze			-
CO4.			•	n of ort			•					Analyze			-
CO5.		<u> </u>						e those	data			Apply			-
		,	100 450								-	-PP-J			-
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS01	PSO2	PSC
CO1							107	100	10)	1010	1011	1012		т	M
	S	S	S	Μ	-	-	-	-	-	-	-	-	S		
CO2	S	S	S	Μ	-	-	-	-	-	-	-	-	S	L	Μ
CO3	S	S	S	Μ	-	-	-	-	-	-	-	-	S	L	S
CO4	S	S	S	Μ	-	-	-	-	-	-	-	-	S	L	S
CO5	S	S	S	Μ	-	-	-	-	-	-		-	S	L	S
S- Str	ong M	-Medi	um L	- Low											
Syllab	_														
•		CTION	I												-
Percep	otion of	f qualit	y, Tag	uchi's d	lefinitio	on of q	uality -	– qualit	y loss f	function,	Planni	ng of exp	erimen	ts,	1
•		•	• •			•	•	•	•			r regress			
FACT	ORIA	LEX	PERIN	1ENTS	5		_								1
												EMS rules			-

SPECIAL DESIGNS

2 K Factorial designs, Fractional factorial designs, Nested designs, Blocking and Confounding.

ORTHOGONAL EXPERIMENTS

Selection of orthogonal arrays (OA's), OA designs, conduct of OA experiments, data collection and

analysis of simple experiments, Modification of orthogonal arrays

ROBUST DESIGN

Variability due to noise factors, Product and process design, Principles of robust design, objective

functions in robust design - S/N ratios, Inner and outer OA experiments, optimization using S/N ratios,

fraction defective analysis, case studies

Text Books:

- 1. Krishnaiah, K. and Shahabudeen, P. Applied Design of Experiments and Taguchi Methods, PHI learning private Ltd., 2012
- 2. Douglas C Montgomery, "Design and Analysis of Experiments", John Wiley & Sons Ltd.

Reference:

- 1. Larry B. Barrentine, "An introduction to Design of Experiments A simplified approach", New Age International Publishers, 2010
- 2. Nicolo Belavendram, "Quality by design" Taguchi techniques for Industrial experimentation, Prentice Hall.

Course Designer

S. No.	Name of the Faculty	Designation	Department / Name of the College	Mail ID
1	Dr.D.Bubesh Kumar	Associate Professor	Mechanical/ AVIT	bubeshkumarmech@gmail.com
2	R.Jayara man	Associate Professor	MEC vmkvec	jayaramanr@vmkvec.edu.in

ELECTIVE COURSES-OPEN ELECTIVE

Preamble New energy sources being worked out for automotive engines to replace conventional methods of using liquid fuels. Fuel cells are one of the promising sources in the development of electric vehicles in the present scenario. Prerequisite Nil **Course Objectives** To impart knowledge of various Fuel cell Technology as an option for automotive energy source. 1 2 To describe the vehicle structure for a fuel cell based energy source. 3 To detail on the various hybrid electric technology. 4 To explain hybrid electric vehicles. **Course Outcomes:** After Successful completion of this course, the students will be able to: CO1. Summarize on the various modes of fuel cell technology for automotive. Understand CO2. Recommend a suitable structure for a fuel cell vehicle. Apply CO3. Appraise on technology for developing hybrid powered vehicles. Apply CO4. Apply Appraise on the electric vehicle technology and its development. Mapping with Programme Outcomes and Programme Specific Outcomes PO3 PO4 PO8 PO11 PO1 PO2 PO5 PO6 PO7 PO9 PO10 PO12 PSO1 COs PSO2 PSO3 S CO1 М Μ Μ --S Μ ----_ ----_ -----CO2 S М М Μ S Μ ------------_ -----S S S S CO3 Μ М -----------------S S S Μ Μ S -----_ ___ --CO4 --_ ----

S- Strong; M-Medium; L-Low

Syllabus

FUELCELL TECHNOLOGY

Structures, Operations and properties of Fuel cells – (Phosphoric Acid Fuel cell, Proton Exchange membrane Fuel cell, Direct Methanol fuel cell Alkaline Fuel Cells, Solid Oxide Fuel Cell, Molten Carbonate Fuel Cell) -Characteristics. Electrochemical energy conversion – Theoretical efficiency – Factors affecting electrochemical energy conversion-Helmholtz double layer model

FUEL CELL BASED VEHICLES STRUCTURE

PEMFC: Operating principle (membranes, electrodes and electrolysis, optimization of membrane and electrode assembly, impurities) – Technology development (single cell and stacks, composite plates) – Fuel processing – Modeling studies (membrane, electrode, membrane-electrode assembly, fuel cell, stack and system) – Technology development and applications. DMFC: Operating principle – Noble metal issue – Electro-oxidation of methanol (Catalysts, oxygen electroreduction, electrolyte, non catalytic aspects) - Methanol crossover.

HYBRID ELECTRIC TECHNOLOGY AND ELECTRIC DRIVETRAIN

Introduction to Hybrid Electric Vehicles: History of hybrid and electric vehicles, social and environmental impartance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies. Basic concept of hybrid traction, introduction to various hybrid drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis. Basic concept of electric traction, introduction to various electric drive-train topologies, power flow control in electric drive-train topologies, fuel efficiency analysis. Electric drive-train topologies, fuel efficiency analysis. Electric vehicles, Configuration and control of DC Motor drives, Configuration and control of Induction Motor drives, configuration and control of Permanent Magnet Motor drives, Configuration and control of Switch Reluctance Motor drives, drive system efficiency.

HYBRID ELECTRIC VEHICLES

Principles of Hybrid Electric Drivetrains, Architectures – Electrical distribution, Hybrid control Strategies – Parallel Hybrid, Series Hybrid - (Charge Sustaining, Charge Depleting), Practical Models – Toyota Prius, Honda Insight. Hybridization Effects. 42 V System for Traction Applications - Lightly Hybridized vehicles, Low –Voltage Storage System, Low – Voltage main system with High voltage bus for propulsion. Heavy Vehicles Hybrid Electric Heavy Duty Vehicles, Fuel cell Heavy duty vehicles.

HYBRID VEHICLE TECHNOLOGY

Sizing the drive system: Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Communications, supporting subsystems. Energy Management Strategies in hybrid and electric vehicles, classification of different energy management strategies, comparison of different energy management strategies, implementation issues of energy management strategies. Case Studies: Design of a Hybrid Electric Vehicle (HEV), Design of a Battery Electric Vehicle (BEV).

TEXT BOOK:

- 1. Basu .S, "Recent Trends in Fuel cell Science and Technology", Anamaya Publishers, New Delhi., 2007
- 2. Viswanathan, B. and Aulice Scibioh, M., "Fuel Cells Principles and Applications", Universities Press (India) Pvt. Ltd., Hyderabad, 2006

3. Hoogers, G., Edr. "Fuel Cell Technology Handbook", CRC Press, Washington D. C,2003

REFERENCES:

- 1. Larminie, J. and Dicks, A., "Fuel Cell Systems Explained" John Wiley & Sons, Ltd., New York, 2001.
- 2. Ali Emadi, Mehrdad Ehsani, John M. Muller, "Vehicular Electric Power Systems", Marcel Dekker, Inc., 2004

Cours	seDesigners:			
S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	T.Raja	Associate Professor	Auto / VMKVEC	<u>rajat@vmkvec.edu.in</u>
2	R. Prabhakar	Associate Professor	Auto / VMKVEC	prabhakarr@vmkvec.edu.in
3	M.Saravana Kumar	Assistant. Professor GRII	Auto / AVIT	<u>saravanakumar@avit.ac.in</u>
4	B. Samuvel Michael	Assistant. Professor GRII	Auto / AVIT	samuvelmichael@avit.ac.in

17ATEC03	MODERN AUTOMOBILE ACCESSORIES	Category	L	Т	Р	С	
ITAILCOJ	MODERITAU I OMODILE ACCESSORIES	EC	3	0	0	3	

Preamble

Automobile vehicles are being provided with lot of accessories as part of controlled operation and passenger safety and comfort. In that sense, it is mandatory to have an understanding of the different technological options available and its application.

Prerequisite

Nil

Course Objectives

course	objectives
1	To describe electronic engine management systems.
2	To explain the new methods of suspension systems applicable for modern day vehicles.
3	To detail the different options of vehicle air-conditioning.
4	To impart the various systems for accessories of an automobile in the present scenario.
5	To detail on the systems for passenger safety of an automotive
Course	Outcomes:

After Successful completion of this course, the students will be able to:

CO1.	Eluc	idate el	lectroni	ic engir	ne mana	igemer	t syste	m for a	n auton	notive.				Understand	
CO2.	App	ropriate	ely cho	ose a si	ispensi	on base	ed on th	ne requi	rement	of a m	odern d	lay veh	icle.	Apply	
CO3.	App	raise a	suitable	e air-co	ndition	ing sys	tem for	r an aut	omotiv	e				Apply	
CO4.	CO4. Appropriately choose a perfect accessory for an automotive vehicle's requirement.													Ap	ply
CO5.													Ap	ply	
Mapping with Programme Outcomes and Programme Specific Outcomes															
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	Μ				-				-	S		
CO2	S	М	М	М				-				-	S		
CO3	S	S	S	М				-				-	S		
CO4	S	S	S	М				-				-	S		
CO5	S	S	S	Μ				-				-	S		

S- Strong; M-Medium; L-Low

Syllabus

ENGINE MANAGEMENT

Electronically controlled SI and CI engine fuel injection systems, related hardware and software. Closed loop ignition system. Catalytic converters and particulate traps.

CHASSIS

Active suspension control, Pneumatic suspensions

HEATING AND AIR CONDITIONING

Principles of vehicle air conditioning and heating.

COMFORT AND CONVENIENCE

Adaptive cruise control, car entertainment, power windows, navigation system, adaptive noise control, electric seats, driver information system. Power windows, power steering.

SAFETY AND SECURITY SYSTEMS

Airbags, seat belt tightening system, collapsible and tilt able steering column, Anti-theft system, anti-lock braking system, electronic stability control system/traction control system, roll over protection system

TEXT BOOK:

1. Bosch Hand Book, SAE Publication, 2010

REFERENCES:

- 1. Tom Denton "Automobile Electrical and Electronic Systems" Edward Arnold, London 1995.
- 2. Eric Chowanietz "Automotive Electronics" SAE International USA 1995.

CourseDesigners:

Comst	Designer 5.			
S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	T.Raja	Associate Professor	Auto / VMKVEC	rajat@vmkvec.edu.in
2	R. Prabhakar	Associate Professor	Auto / VMKVEC	prabhakarr@vmkvec.edu.in
3	M.Saravana Kumar	Assistant. Professor GRII	Auto / AVIT	saravanakumar@avit.ac.in
4	B. Samuvel Michael	Assistant. Professor GRII	Auto / AVIT	samuvelmichael@avit.ac.in

17ATEC02	NEW GENERATION AND HYBRID	Category	L	Т	Р	С
TATECO2	VEHICLES	EC	3	0	0	3

Pream															
To teach		udents	about t	he new	genera	tion an	d hybri	d vehic	les						
Prerequ	iisite														
Nil	~														
Course															
				modes	2										
				ent mod						on vehic	cles.				
			-	ration a											
				ghways											
			advanc	ed tech	nology	in braki	ing syst	ems, su	spensio	n, aeroo	dynami	cs and s	afety.		
Course															
After Su															
CO1		uss the ent scer		s metho	ods of d	levelop	ing hył	orid veł	nicle teo	chnolog	gy avail	able in	the	Unde	rstand
CO2	. App	ly an ap	opropri	ate pow	er syst	em for	a new g	generat	ion veh	icle				Ap	ply
CO3	. App	ly a rig	ht choi	ce of so	ource of	power	for a r	nodern	vehicle	è				Ap	ply
CO4	. App	raise at	out the	e roads,	highwa	ays and	l autom	ated tra	cks for	next g	enerati	on auto	motive.	Ana	lyze
				the exa										Ana	lyze
				g with]								ic Outo	comes		-
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	М	М				-				-	S		
CO2	S	М	М	М				-				-	S		
CO3	S	М	М	М	М			-				-	S		
CO4	S	S	S	S	S			-				-	S		
CO5	S	S	S	S	S			-				-	S		

S- Strong; M-Medium; L-Low

Syllabus

INTRODUCTION TO HYBRID ELECTRIC VEHICLES

History of hybrid and electric vehicles, social and environmental importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies. Conventional Vehicles: Basics of vehicle performance, vehicle power source characterization, transmission characteristics, mathematical models to describe vehicle performance.

HYBRID ELECTRIC DRIVE-TRAINS

Basic concept of hybrid traction, introduction to various hybrid drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis. Electric Drive-trains: Basic concept of electric traction, introduction to various electric drive-train topologies, power flow control in electric drive-train topologies, fuel efficiency analysis

ELECTRIC PROPULSION UNIT

Introduction to electric components used in hybrid and electric vehicles, Configuration and control of DC Motor drives, Configuration and control of Induction Motor drives

ENERGY STORAGE

Introduction to Energy Storage Requirements in Hybrid and Electric Vehicles, Battery based energy storage and its analysis, Fuel Cell based energy storage and its analysis, Hybridization of different energy storage devices

SIZING THE DRIVE SYSTEM

Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power, selecting the energy storage technology,

TEXT BOOK:

1. Bosch Hand Book, SAE Publication, 2010

2. Iqbal Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2003

REFERENCES:

- 1. James Larminie, John Lowry, Electric Vehicle Technology Explained, Wiley, 2003.
- 2. Mehrdad Ehsani, YimiGao, Sebastian E. Gay, Ali Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press, 2004.

CourseDesigners:

S.No	Name of the Faculty	Designation	Department/College	Mail ID
1	T.Raja	Associate Professor	Auto / VMKVEC	rajat@vmkvec.edu.in
2	R. Prabhakar	Associate Professor	Auto / VMKVEC	prabhakarr@vmkvec.edu.in
3	M.Saravana Kumar	Assistant. Professor GRII	Auto / AVIT	<u>saravanakumar@avit.ac.in</u>
4	B. Samuvel Michael	Assistant. Professor GRII	Auto / AVIT	samuvelmichael@avit.ac.in

1 7 D7	ГСС15		FO	ים חרו		CCINI	ገ ጥ ₽∕		DLOGY	7	Categ	gory	L	Т	Р	Credit
1/8	ICCI5		FO	OD PI	KUCE	991N(ј IE(_HNU	LOGI	r –	CC		3	0	0	3
PREA	MBLE															
																tion and
																als with
															earn ab	out food
				Ional I	oous al	ia the	strateg	gies to	produc	e speci	fic food	Ingred	ients			
COUR	-			!												
					6.6	1 0		<u> </u>	· c	100	1	1 /	1 /1	1		
	which of					ods, Ia	actors	affect	ing foo	od & 10	ood proo	iucts a	nd ti	ne n	11cro-01	ganisms
						snoila	de an	d diffe	rent fo	od pres	ervation	metho	de	and	their in	npact on
											cs of for		<i>u</i> s,	ana	unen m	iipact of
2			<u>^</u>								ility in f		oduc	t pre	paratio	ns
4							-			• •	ndustria				_	
5.	To Cho	ose th	e mate	erials a	nd type	es of n	ackao	ing for	· foods	and its	quality (esting				
COUR				<i></i>	na type	<u>-3 01 p</u>	ackag	ing ioi	10003	and no	quanty	coung				
On the				ion of	the cou	rse, st	udents	will t	e able	to						
			-								liseases.				Under	stand
CO2. In	nfer the	e role	of mic	robes i	in food	spoila	ige and	d food	preserv	vation					Apply	,
						-	-		-		ation in	food	orod	uct	Apply	
CO4. U	Jtilize t	he mo	dern n	nethods	s for fo	ods pr	eserva	tion u	sing bi	otechno	ology.				Apply	,
						-			-		acking.				Analy	
	*									· ·	ME SPI	ECIFI	[~] 01		•	
COS	PO1	PO2	PO3		PO5	PO6	PO7	PO8			PO11	PO12				PSO3
	L											r012	гS	01	r 302	1303
CO1		M	-	- M	L	M	L	-	-	-	-	-	-	л	-	-
CO2	M	M	M	M	L	L	М	-	-	-	-	-	N		-	- M
CO3	M	M	M	L	M	S M	M	-	-	-	-	-	-		-	М
CO4	S	S	S	S	S	M	L	-	-	-	-	-	Ν	1	-	-
CO5	S	Μ	Μ	М	М	L	Μ	-	-	-	-	-	-		-	-

S- Strong; M-Medium; L-Low

SYLLABUS

FUNDAMENTALS OF FOOD MICROBIOLOGY

Microbiology of different types of foods-Vegetables, fruits, milk and milk products, meat and meat products. Factors affecting the food products. Food borne diseases and causative organisms. Food intoxication.

FOOD SPOILAGE

Food Spoilage types & causes. Spoilage of foods and Shelf –life – Vegetables and fruits, Milk and milk products, meat and meat products, cereals and cereals products, Alcoholic beverages. Factors influencing food spoilage. Control of microbes in foods.

PROCESSING OF FOODS

Heating, boiling, oxidation, toxic inhibition, dehydration, drying-Yeast based products, Milk products, Jams and jellies, Pickles, Meat and meat products. Labeling Instructions.

INDUSTRIALIZATION/ MODERN FOOD PRESEVERVATION

Pasteurization, Vacuum packing, irradiation, bio preservation, Modified atmosphere packing, cryopreservation, Pickling, salting, drying, freezing, refrigeration. Food additives- Intentional and Nonintentional additives, Food colorants- natural and artificial, food flavours.

PACKAGING AND QUALITY TESTING

Methods of packaging of foods-Solid, liquid, semi solids, Modified atmosphere packing. Factors affecting packaging. Packaging materials.

TEXT BOOKS

1. Frazier. Food Microbiology. McGraw Hill Publication.4th Edition.2001

2. Sivashankar.B.Food processing Preservation, Prenlice Hall of India.Pvt.Ltd.2002

REFERENCE BOOKS

1. James M Jay, Martin J, Loessner and David A Golden. Food Microbiology, Springer Publication, 7th Edition. 2005

2. Shetty K, Paliyath, Food Microbiology, 2nd Edition, Taylor and Francis, 2006

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.R.Subbaiya	Associate Professor	Biotechnology	subbaiya@avit.ac.in
2	Dr.M.Sridevi	Professor & Head	Biotechnology	sridevi@vmkvec.edu.in

1 7 RT	EC24		RIOI	FERTI	II7FD	TECI	HNOT	OCV		Categ	gory	L	Т	Р	Credit
1/D1	ec24		ыог		LIZEF	IECI	INUL	UGI		EC (PS)	3	0	0	3
PREA	MBLI	E													
		-			-	-				-			-	gy and it	
		-	the e	ntrepre	neursh	ip to c	atch w	vith the	e curre	nt trend	s as we	ell as cr	eating tl	ne indust	ry ready
^	sionals														
PREF	REQUI	SITE -	- NIL												
COU	RSE O	BJECT	TIVES												
1	To sta	te the t	basic kr	nowled	ge on b	oiofertil	izer in	agricul	ture.						
2	To dis	scuss at	oout the	e role o	f biofe	rtilizer	in crop	produ	ction						
3	To im	plemer	t the p	roducti	on and	applica	ation of	f biofer	tilizer t	technolo	gy				
4	To ou	tline th	e mark	eting st	rategie	s of bio	ofertiliz	zer.							
COU	RSE O	UTCO	MES	-											
After	the suce	cessful	comple	etion of	the co	urse, le	earner v	will be	able to						
CO1.	Explair	the ty	pes and	l impor	tance o	f biofe	rtilizer	•					Unde	rstand	
CO2.	Outline	in deta	ail abou	it the d	ifferent	chemi	cal fert	ilizer, g	green n	nanuring	g and its	role in	Unde	rstand	
CO3.	Identify	y the fu	nctions	of mic	croorga	nism fr	om va	rious so	ources a	and their	mass		Apply	1	
CO4.	Inspect	in deta	il abou	t the ap	oplicati	on and	limitat	ion of l	oioferti	lizer in o	crop fiel	d	Analy	ze	
<u>CO5.</u>	Examir	ne the p	romoti	on and	strateg	ies imr	rovem	ent in d	listribu	tion syst	em.		Analy	ze	
		•				•									
										-		FIC OU			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	L	-	L	-	-	L	-	-	-	L	L	-	-	-
CO2	S	Μ	S	-	-	-	S	-	-	-	L	L	-	-	-
CO3	Μ	-	Μ	Μ	-	-	Μ	-	-	-	L	-	-	-	-
CO4 CO5	L	-	-	L	-	-	S	-	-	-	-	-	-	-	-
005	S	Μ	L	L	_	-	-	-	-	_	L	S	M	-	Μ

SYLLABUS

BIOFERTILIZER

Definition and types, importance of biofertlizers in agriculture, Characteristics of biofertilizers- *Rhizobium*, *Azotobactor*, *Azospirillum*, Phosphate solubilizing microorganisms, cyanobacteria, *Azolla*, Mycorrhizae. Symbiosis-Physiology, biochemistry and molecular genetics of symbiosis, Enzymes and their regulation: Nitrogenase, hydrogenase

BIOFERTILIZER AND ITS ROLE IN CROP PRODUCTION SYSTEM

Different chemical fertilizer, its function and effect on agriculture. Role of organic matter on crop production and soil health. Various type of bio-inocula and techniques application and keep soil environment free from pollution. Green manuring, its sources, use and role in cropping system.

FUNCTION AND MASS SCALE PRODUCTION

Total and differential count of microorganisms from soil, water and carrier material. Nitrogen cycle andnitrogen fixation technology. Isolation, purification, screening, selection, mass scale production and preservation of *Rhizobia/Bradyrhizobia, Azotobacter, Azospirillum*, PSB and KSB. General biology, function, use and important of green manuring, particularly Sesbania and Azolla.

APPLICATION TECHNOLOGY

Strain selection, sterilization, growth and fermentation, mass production of various biofertilizers. Application technology: Standards and quality control, application for field and tree crops, nursery plants and seedlings. Limitation of bio-fertilizer and bio-pesticide application in agriculture.

EXTENSION, PROMOTION AND MARKETING

Extension strategies, diagnosis for the effectiveness of inoculation, improvement in distribution system.

TEXT BOOKS:

- 1. Dr. HLS Tomdon, Fertilizers, organic manures, recyclable water and biofertilizer, Fertilizer development and consultation organization 204-204 A New Delhi.
- 2. S.L. Tisdale, J.D. Beaton, W.L. Nelson, J.L. Havling, Soil fertility and fertilizers, fifth edition, Mc millan publishing company 866 third avenue new yark.
- 3. R. Serraj, Symbiotic nitrogen fixation prospects for enhanced application in tropical agriculture, Oxford & IBH publishing Co Pvt. Ltd New Delhi.

REFERENCES:

- 1. HLS. Tandan, Biofertilizer technology marketing and uses, Fertilizer development.
- 2. N.S. Subba Rao, Biofertilizer in Agriculture, Oxford & IBH Publishing co.pot ltd.

COUR	COURSE DESIGNERS												
S.No.	Name of the Faculty	Designation	Department	Mail ID									
1	R. Deepa Priya	Assistant professor	Biotechnology	deepapriya.biotech@avit.ac.in									
2	Dr M.Sridevi	Professor & Head	Biotechnology	sridevi@vkvec.edu.in									

										Cat	egory	L	Т	Р	C	Credit
17B ⁻	FEC25		BIOL	OGY	FOR	NON	BIO	LOG	ISTS	EC	C(PS)	3	0	0		3
PREAM	MBLE														1	
The pu	rpose	of this	s cour	se is	to pr	ovide	a bas	sic ur	derstan	ding	of biolo	gical 1	mecha	nisms	of	living
organis	rganisms from the perspective of engineers. In addition, the course is expected to encourage ngineering students to think about solving biological problems with engineering tools.															
enginee	ring st	udents	to thi	nk ab	out so	lving	biolog	gical p	roblem	s with	enginee	ering to	ools.			
PRERI	EQUIS	SITE -	- NIL													
COUR	SE OB	JECT	IVES	5												
1	To list out the students with the basic organization of organisms and subsequent building to a															
	living being															
2	To summarize about the machinery of the cell functions that is ultimately responsible for															
	various daily activities.															
3	To implement the knowledge about biological problems that requires engineering expertise to															
	solve them.															
COUR	SE OU	TCO	MES													
After th	e succ	essful	compl	letion	of the	cours	se, lea	rner w	vill be a	ble to						
CO1: C	utline	the str	ucture	and c	ell the	eory o	f livir	ng org	anism.					Unde	ersta	nd
CO2: In	nfer ab	out the	biolo	gical	divers	ity of	life.							Unde	ersta	nd
CO3: U	tilize t	he app	olicatio	on of e	enzym	es in	indust	rial le	vel.					Appl	у	
CO4: Io	lentify	the us	es of I	Biorer	nediat	ion ai	nd Bio	osenso	ors using	g mole	cular m	achine	s.	Appl	у	
CO5: A immune	-		ail abo	out the	e princ	ciples	of cel	l sign	alling i	n nerv	ous syst	em and	1	Anal	yse	
MAPP	ING W	ITH	PROC	GRAN	IME	OUT	COM	ES A	ND PR	1	AMME	SPEC	CIFIC	OUT	CO	MES
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO11	PO12	PSO1	PS	02	PSO3
CO1	M	-	-	-	-	-	-	-	-	-	-	L	-			-
CO2	S	M	S	-	- T	M	S	-	L	L	- T	L	-			-
CO3 CO4	- T	L	M	- T	L	S	M	- M	M	M	L	L	- М		л	-
C04 C05	L S	L M	L L	L L	-	L	S	М	S	L S	- L	M S	M	N	1	M
S- Stroi					-	-	-	_	-	5	L	5	-			
SVII	-	incuru	, ב													

SYLLABUS

INTRODUCTION TO BIOLOGY – CELL AND CELL STRUCTURE AND FUNCTION

Introduction, Scope, Disciplines of biology –An over View of plants, animal, Microorganism. INTRODUTION TO BIOLOGY – BIO CHEMISTRY, ENZYME, INDUSTRIAL USE

Prokaryotes – Eukaryotes, Cell, Cell structure, Organelles and their functions, Yeast, Bacteria –Friends and Foe.

FOOD DIET NUTRITION

Major constituents of food – carbohydrate, protein, lipids, vitamins and minerals. Balanced diet-BI-Junk food, Fermented food, nutritional values.

ENVIRONMENT

Clean environment-Reduce, Recycle and Reuse-Renewable energy-Waste management –water-waste water management – personal hygiene, Global Climatic Changes -Tsunami, global warming, storms, vardha, Okhi. Recycled products -Paper, No to plastic, go green.

HEALTH, IMMUNE SYSTEM AND MEDICINE

Immunology- Blood Grouping – Antigen- Antibody. Antibiotics, Vaccines their significance. Diagnosis –Parameters in Urine and Blood. Instruments – ECG, ECHO, MRI, X-ray. Prophylaxis, Chemotherapy and Allergy.

TEXT BOOKS:

- 1. J.M.Berg, J.L.Tymosczko and L.Sryer. Biochemistry, W.H Freeman publication.
- 2. Student Companion to accompany Biochemistry, Fifth Edition-Richard I. Gum port.
- 3. Frank H.Deis, Nancy Count Gerber, Roger E.Koeppe, 2 Molecular motors

REFERENCE BOOKS:

- 1. Albert's, 2003, Molecular Biology of the cell
- 2. Lodish, 2004, Molecular cell Biology

S.No	Name of the Faculty	Designation	Department	Mail ID
1	Dr. R. Deepapriya	Assistant Professor	Biotechnology	deepapriya21@gmail.com
2	Dr M.Sridevi	Professor & Head	Biotechnology	sridevi@vkvec.edu.in

1 7 DT	EC30		TID	TDE	COLIP	CESN	T & NT & 4	GEME	NT	Categ	gory	L	Т	P	Credit
1/01	EC30	INA	IUKA	AL KE	SOUR	CES IV	IANA	GENIE	191	EC (PS)	3	0	0	3
PREA	AMBLI	E												1	
		•					•	-						e world	
		-			-			-		-				lability	
	-					with th	e cons	ervatio	n of wi	ld resou	rce and	cultivati	on of va	luable p	roducts
	e sophis			man lif	e.										
PREF	REQUI	SITE -	- NIL												
COU	RSE O	BJECT	TIVES												
1	To sta	te abou	it the k	inds an	d impo	rtance	of bior	esource	emana	gement.					
2					-					eding ty	pes.				
3										and imp					
4									-	ain cons		policies	3		
5		velop t	•				•				er varion	poneres			
	RSE O	_			mporta		value t	iuuuu p	Toduct	5.					
	the suc			etion of	the co	urse, le	arner v	will be	able to						
			-							nagemer	nt		Under	stand	
	Explain												Under		
	*		0	•			• •				-				
						<u> </u>				nd sericu			Apply		
CO4.	Catego	rize the	strateg	gies on	conser	vation a	and ma	nagem	ent of f	orest res	ource.		Analy	ze	
CO5.	Analyz	e the cr	op imp	rovem	ent tecl	nnologi	es in th	ne prod	uction	of biores	source		Analy	ze	
MAP	PING	WITH	PROG	RAM	ME OU	JTCO	MES A	ND PI	ROGR	AMME	SPECI	FIC OU	TCOM	ES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO
CO1	L	-	L	LM	-	-	L	-	-	-	-	М	-	-	-
CO2	L	-	М	L	L	-	М	-	S	-	L	М	-	-	-
CO3	S	S	-	-	-	-	M	L	-	-	L	-	-	-	-
CO4	L L	- L	L	L L	-	L	S L	L	-	-	-	- S	-	М	-
CO5					-			1		-	-		Μ	1	M

SYLLABUS

BASICS OF BIORESOURCE MANAGEMENT

Basics of Bioresources - Concept, kinds, importance. Human Resource: Management, scope and importance of human resource management (HRM) and personnel management; human development index (HDI). Animal Resources Conservation and Management: Concept on livestock and livestock production management; role in livelihood and nutritional securities; sustainable livestock production, problems and opportunities

AQUACULTURE

Introduction to aquaculture; Prawn culture, Methods of prawn fishing, Preservation and processing of prawn; Pearl culture and status of pearl culture in India; Economically important of fishes. Setting up of a fish farm, Monoculture and composite fish culture, Bundh breeding, Induced breeding, methods of fishing, Fish preservation and processing; Identification of fish diseases and their control.

VERIMICULTURE AND SERICULTURE

Introduction and scope, Species of earthworm, Characteristics features of earthworm. Overview of methods of vermicomposting, Role of earthworm in solid waste management. Vermiwash- its importance, Vermicompost as bio-fertilizer. Overview of scope, economic importance and the product of Sericulture.

FOREST MANAGEMENT AND PLANTS CULTIVATION

Classification and distribution of forests, current strategies of conservation and management of forest resource; agro-forestry, social forestry; Joint Forest Management; National Forest Policy; Forest (conservation) Act, 1980. A brief account of Harlan and Hawkes theories; practices of floriculture, agroforestry, BT crops (brief account).

VALUE ADDED BIORESOURCE PRODUCTS

Economic uses of important cereals, legumes (pulses and fodders), fruits and vegetables, spices and condiments, beverages, oils and fats, essential oils, medicinal plants, hallucinogens (psychotropic drugs), timber plants, fibre plants, natural rubber, resins, raw materials for paper. A brief account of crop improvement technologies, biosafety considerations, natural products.

TEXT BOOKS:

- 1. Manju Yadav. 2010. "Economic Zoology" Discovery publishing housePvt.Ltd., New Delhi
- 2. Trivedi, T, R. (2011) "Forest Management" Discovery Publishing Pvt.Ltd. New Delhi
- 3. Milton Fingerman, RachakondaNagabhushanam 2000. "Recent Advances in Marine Biotechnology" IstEdition Science Pub Inc.

REFERENCES:

1. Peter Bettinger Kevin Boston Jacek Siry Donald Grebner 2017. Forest Management and Planning 2nd Edition. Academic press.

COUR	COURSE DESIGNERS											
S.No.	Name of the Faculty	Designation	Department	Mail ID								
1	Dr.Chozhavendhan. S	Associate professor	Biotechnology	chozhavendhan@avit.ac.in								
2	Mrs.R.Subashini	Assistant Professor	Biotechnology	subashini@vmkvec.edu.in								

17 B T	FC21	AI	PPLIC	ATION	NS OF	ENZY	ME IN	N WAS	TE	Categ	gory	L	Т	Р	Credit
1/D1	ECJI			Μ	ANAG	EME	NT			EC (PS)	3	0	0	3
PREA	MBLI	£											I		
		-				•					e		U U		acters of
-				-				-	-						find the
		-		-				-		student	s to em	rich the	ir know	ledge o	n waste
		-	atalyst	to solv	e the e	nvironi	nental	polluti	on.						
PRER	REQUI	SITE -	- NIL												
COU	RSE O	BJECT	FIVES												
1	To state the basic knowledge on different wastes														
2	To discuss about the waste management methods														
3	To perform the waste treatment using enzymes														
4	To im	plemer	nt the ba	asics of	f enzyn	ne imm	obiliza	tion pr	ocess						
5	To implement the basics of enzyme immobilization process To outline the students to basic knowledge concerning biodegradation with the usage of enzymes														
	RSE O														
After t	the succ	cessful	comple	etion of	the co	urse, le	earner v	will be	able to						
CO1.]	Illustra	te and o	classify	the dif	ferent	wastes	in envi	ironme	nt				Unde	rstand	
CO2.	Outline	about	the gen	neral wa	aste ma	inagem	ent me	thods					Unde	rstand	
CO3.]	Develo	p waste	e treatm	nent usi	ing enz	ymes							Appl	Y	
CO4.]	Identify	the ba	sics of	enzym	e immo	obilizat	ion pro	ocess					Apply	ý	
CO5.A	Analyze	differ	ent met	hod of	biodeg	radatio	n of wa	aste usi	ng enz	ymes			Analy	/se	
MAPI	PING V	WITH	PROG	RAM	ME OU	UTCO	MES A	ND PI	ROGR	AMME	SPECI	FIC OU	JTCOM	ES	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	L	-	-	-	-	-	-	-	-	-	-	-	-	M	-
CO2	М	М	-	-	-	-	М	-	-	-	-	-	-	-	-
CO3	М	М	-		L	-	I	S	-	-	-	S	-	-	-
CO4	М	Μ	-	-	S	-	L	-	-	-	-	-	М	-	-
CO5	Μ	Μ	L	L	S	S	-	L	-	-	-	-	Μ	-	Μ
S- Stro	- Strong; M-Medium; L-Low														

SYLLABUS

CLASSIFICATION AND TECHNOLOGIES IN REDUCING WASTE

Definition of waste, and its classification, Waste treatment technologies including waste incineration and energy from waste, advanced conversion technologies of pyrolysis and gasification, anaerobic digestion, composting and biological treatment of wastes.

WASTE AND RESOURCE MANAGEMENT

3 RS, Advances in waste recycling and recovery technologies to deliver added value products; Landfill engineering, Sustainability and resource efficiency with consideration for materials flow through the economy, steps towards designing out waste and maximizing the value of outputs from waste treatment processes.

ENZYME IN WASTE TREATMENT

Enzymes in enhanced oil recovery; treatment of wastewater of brewery, pharmaceutical, textile dyeing, metal

processing, petrochemical, pulp and paper industry; role of natural/stimulated, dead/spent microbial cultures, GMOs, phytoremediation. Biological indicators of waste by enzyme.

ENZYME ACTION AND IMMOBILIZATION

Action of enzyme on xenobiotic compound, phenolic compounds, pesticides (organo chlorinated, organo phosphorous and carbonated) immobilization techniques.

BIOSENSOR AND OPTICAL INSTRUMENTS

Birth of biosensors, advantages and disadvantages, construction of biosensors- enzyme and microbial biosensor. Transducers- piezoelectric, potentiometric, amperometric and fiber optics.

TEXTBOOKS:

- 1. Instant Notes in Ecology by A. Mackenzie, A.S. Ball and S.R. Virdee, Bios Scientific Publishers Ltd., UK, 1999.
- 2. Biotechnology-Applications to Environmental Protection by M.M. Pandey, Himalaya Publishing House, 1993.
- 3. Pesticide Properties in the Environment by A.G. Hornsky, R.D. Wauchope and A.E. Herner, Springer-Verlag, New York Inc., 1996.
- 4. Basic Environmental Science by G.S.P. Iyer, Educational Publishers and Distributers, New Delhi, 1997.

REFERENCES:

- 1. Popular Biotechnology Lecture Series Focus: Bioremediation by Division of Biotechnology, PSCST, 2013.
- 2. Pesticide Properties in the Environment by A.G. Hornsky, R.D. Wauchope and A.E. Herner, Springer-Verlag, New York Inc., 1996.
- 3. Introduction to Environmental Technology by A.K. Chatterji, Prentice Hall of India Pvt. Ltd., New Delhi, 2002.

COUR	COURSE DESIGNERS												
S.No.	Name of the Faculty	Designation	Department	Mail ID									
1	Dr. A. Nirmala	Assistant professor (Gr- II)	Biotechnology	nimmi_aruna@yahoo.com									
2	Ms.R.Subashini	Assistant Professor	Biotechnology	subashini@vmkvec.ac.in									

17CV	/SE35	QU	ALITY		NTRO REAL			URAN	CE IN			L	Т	Р	Credit
					NLAL	LOIA				EC(C	DE)	3	0	0	3
	MBLE														
							-	•	-	plannin	-	-			-
										nship m		ement te	chniq	ues, q	uality
				ce and	benef	its of c	ontrol	charts	and app	plicatior	ıs				
PRER	EQUIS	SITE -	NIL												
COUF	RSE OF	JEC	TIVES												
1	To stu	dy abo	out the	concep	ot of qu	iality, j	plannir	ng and	quality	and ma	rket sl	hare			
2	To lea	rn abo	out the	elemer	nts and	benefi	ts of to	tal qua	lity ma	inageme	ent				
3	To un	derstai	nd abou	ut the c	ustom	er satis	faction	n measu	iremen	t technio	ques a	nd cust	omer	relatio	nship
)	manag	gement	t techn	iques.											
1	To lea	rn abo	out the	quality	contro	ol and c	quality	assura	nce						
5	To kn	ow ab	out the	benefi	ts of co	ontrol o	charts a	and app	licatio	ns					
COUF	RSE OU	JTCO	MES												
On the	succes	sful co	mpleti	on of t	he cou	rse, stu	dents v	will be	able to)					
										narket s	hare		Und	lerstan	d
CO2. I	Rememl	per the	eleme	ents and	l benef	its of t	otal qu	ality m	anager	nent			Ren	nembe	r
						on me	asurem	ent tec	hnique	s and cu	istome	er	Und	lerstan	d
	nship m	U				1 14							D	1	
	Remem								,					nembe	
	Underst													lerstan	
										RAMM				1	1
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO	PO1	PS	PS	PSO3
											11	2	01	O2	
CO1	S	М	L	-	-	-	-	-	-	-	-	-	Μ	Μ	Μ
CO2	S	Μ	L	S	-	-	-	-	-	-	-	-	L	Μ	Μ
CO3	S	Μ	Μ	S	-	-	-	-	-	-	-	-	Μ	Μ	Μ
CO4	S	Μ	М	М	-	-	-	-	-	-	-	-	L	Μ	Μ
CO5	S	Μ	Μ	-	-	-	-	-	-	-	-	L	L	Μ	Μ
3- Stro	ong; M-	Mediu	m; L-I	LOW											
SYLL	ABUS														
-										ADVA				•	
		-		•			0		•	ms. Qua	ality a	nd Price	e - Qu	ality a	nd
Marke	t Share	-	•		-	•	-		•	0					
	CIPLE			-						duction				-	•
PRIN			1 D	ممنسلها	Matior	nal Ona	ility Av	ward C	riteria.	Benefit	s of T	otal Ou	alit v N	Manag	ement
P RIN Manag	gement -													ianag	ement.
P RIN Manag The D	eming N	Aanag	ement	Philoso	ophy –	The Ju	iran Ph	ilosopl	ny – Tł	ne Crost	oy Phi	losophy	•	_	
PRIN Manag The D CUST	eming N OMER	/lanag FOC	ement US: Tl	Philoso he Cus	ophy – tomer-	The Ju Driven	ran Ph Qualit	ilosopł ty Cycl	ny – Tł e - Qua		by Phil	losophy Deploy	vment	_	

QUALITY CONTROL AND QUALITY ASSURANCE Concept of Quality Control – Concept of Process Variation – Acceptance Sampling – Sampling Inspection Vs. 100% Inspection – Attributes and variable sampling plans – OC Curves – Producer and Consumer Risk – AQL, RQL, TQL, AOQL and AOL.

(10%)

STATISTICAL PROCESS CONTROL : Control Charts – X-R, P, np and C Charts – Benefits of Control Charts and Applications

TEXT BOOKS:

- 1. Quality Control Dale H Besterfield Pearson Education
- 2. Total Quality Management S. Sundarrajan
- 3. Quality Control & Total Quality Management Jain

REFERENCES:

- 1. The essence of Total Quality Management Hansen & Ghare
- 2. Managing for Total Quality Logothetic
- 3. Quality Problem Solving Smith
- 4. ISO 9000 Kairon
- 5. Manuals of various standards

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1.	Dr.S.P.Sangeetha	HOD-Civil	AVIT	sangeetha@avit.ac.in
2.	Mrs.Vaidevi	AP Fr II	AVIT	vaidevic@ avit.ac.in

17CVSE42	GREEN BUILDING AND ENERGY	Category	L	Т	Р	Cred it
	EFFICIENT BUILDING	EC(OE)	3	0	0	3

PREAMBLE

Before starting with this course one must get a clear knowledge on the basics of green building,

learning the plan details of HVAC for a building, energy efficient modeling.

PRER	PREREQUISITE :Nil.														
COUR	RSE O	BJEC	FIVES												
1	To stu	udy abo	out the	Devel	opment	t & Pla	n Impl	ementa	ation.						
2	To lea	arn abo	out the	fundan	nentals	of elec	etric po	ower sy	stems	and buil	ding ele	ectric wi	ring.		
3	To stu	udy abo	out the	Biocli	matic d	lesign	and co	ncepts.							
4	To ga	in the	knowle	edge ab	out W	ater co	nserva	tion &	water 1	manager	nent sys	stems.			
5	To lea	To learn about the Key components of remodelling project.													
COUF	RSE OUTCOMES														
On the	e successful completion of the course, students will be able to														
CO1.	Describe the efficiencies of green buildings and construction processes of green buildings Apply														
CO2.	Understand the benefits and advantages of green building practices Apply														
CO3. 1	dentify	and d	escribe	green	system	ns and :	feature	s in res	sidentia	and co	ommerci	al build	ings	Anal	yze
CO4. I	Define	what n	nakes u	ip a hea	althy b	uilding								Appl	У
CO5.	Descri	be gree	en and	sustain	able m	aterials	s and p	ractice	S					Appl	У
MAPI	PING V	WITH	PROC	GRAM	ME O	UTCO	MES	AND F	PROG	RAMM	E SPEC	CIFIC C	OUTCO	MES	
COS	PO 1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	-	-	-	-	-	-	-	-	-	-	L	-
CO2	S	S M L M												L	L
CO3	S	S M M L M												М	L
CO4	S	М	М	М	-	-	-	-	-	-	-	-	-	М	М
CO5	S	М	L	-	-	-	-	-	-	-	-	L	-	М	L

S- Strong; M-Medium; L-Low

SYLLABUS

GREEN BUILDING BASICS AND PRACTICES: Site Design / Development & Plan Implementation, Resource Efficiency, Energy Efficiency, Water Efficiency, Indoor Environmental Quality and Homeowner Education, Operation, Maintenance & Practices. Assessment of building design and construction, emission of CO2, SO2, and NO2 of building materials, elements, and construction process.

ENERGY MANAGEMENT SYSTEM OF BUILDINGS: The objective of the course is to provide students the necessary tools to control, monitor and optimize the building's facilities, mechanical and electrical equipment for comfort, safety, and efficiency. It starts with the fundamentals of electric power systems and building electric wiring and then works through building automation systems (BAS) principles. The course allows students to acquaint applying BAS to commercial HVAC equipment, lighting systems, fire systems and security/observation systems.

LOW ENERGY ARCHITECTURE, PASSIVE BUILDING DESIGN: Solar geometry, climate/regional limitations, natural lighting, passive design and sustainability initiatives, insulating and energy storing material. Bioclimatic design and concepts. Case studies will be used extensively as a vehicle to discuss the success/failure of ideas and their physical applications.

WATER MANAGEMENT, BUILDING METHODS & MATERIALS : Water conservation, water management systems, water efficient landscaping, green roofing, rainwater harvesting, sanitary fixtures and plumbing systems, wastewater treatment and reuse, and process water strategies. AAC (Aerated Auto clave Concrete), ICF (Insulated Concrete Forms), new Advanced Framing & Insulation Techniques, SIPs (Structural Insulated Panels), Straw Bale and Pumice-crete Rammed Earth, Timber Frame, Straw Clay, and Earth ship buildings.

ENERGY EFFICIENT REMODELING : Key components of remodeling projects-windows, walls, roofs, heating and ventilation, insulation, tighten up the building envelope, Advances in building technology and materials, Incorporate active and passive solar into the home or commercial building, Mistakes to avoid, various improvements cost

TEXT BOOKS:

- 1. Kibert, C. J. "Sustainable Construction: Green Building Design and Delivery," Second Edition, New York: John Wiley & Sons, Inc., 2008.
- 2. Thermal analysis and design of passive solar buildings by A. K. Athienitis and Mat Santamouris.
- 3. Passive building design by N.K. Bansal, G. Hauser, and G. Minke

REFERENCES:

1. McDonough, W. and Braungart, M. "Cradle to Cradle: Remaking the Way We Make Things," New York: Farrar, Straus and Giroux, 2002

S. No	Name of the Faculty	Designatio n	Name of the College	Mail ID
1.	R. Abirami	Asst. Prof-I	AVIT	abirami.civil@avit.ac.in
2	Dr.S.P.Sangeetha	HOD-Civil	AVIT	sangeetha@avit.ac.in

		<u> </u>									1	I			1
170	VOT 41					CTUD				Categ	gory	L	Т	Р	Credit
	VSE41		1	NFRAS		CTUR LOPM	-	JJECI		EC(C	DE)	3	0	0	3
PREA	MBLE	Ē													
	To s	tudy t	he eler	nents (of cons	structio	on plar	nning a	ind sch	eduling	and to	apply a	appropri	ate tools	and
techn	iques	like n	etwork	s and	coding	g syste	ms. T	o stud	y the	element	s of q	uality co	ontrol a	nd safet	y of
const	ruction	projec	ets. To	study t	he moi	nitoring	g of pro	ojects t	hrough	cost coi	ntrol.				
PRER	EQUI	SITE													
	Nil.														
COUF	RSE O	BJEC	FIVES												
1	To stu	udy ab	out the	Conce	pts env	vironm	ent rela	ationsh	ip with	focus o	n issues	s of popu	ulation		
2	To learn about the Application of ecological principles in sustainability.														
3	To study about the Land capability and suitability analysis in location and planning of urban.														
4	To gain the knowledge about Urban interference in hydrological cycle.														
5	To stu	udy ab	out the	Conce	pts of	effects	of air j	pollutio	on and	solid wa	sted is	posalin c	cavities.		
COUF	RSE O	UTCO	MES												
On the	succes	ssful co	ompleti	ion of t	he cou	rse, stu	dents	will be	able to)					
CO1.	Unders	stand in	nfrastru	icture o	organiz	ations								A	Apply
CO2. I	Prepare	infras	tructur	e maste	er plan									A	nalyze
CO3.	Schedu	ıle infr	astruct	ure pro	ject ac	tivities								A	nalyze
CO4. I	Prepare	projec	et deve	lopmer	ıt plan									A	Apply
CO5.	Prepare	e tende	er docu	ments	for infr	astruct	ure pro	oject co	ontract					A	nalyze
MAPI	PING V	VITH	PROG	GRAM	ME O	UTCO	MES	AND I	PROG	RAMM	E SPE	CIFIC C	OUTCO	MES	
COS	PO 1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	M	L	-	-	-	-	-	-	-	-	-	-	-	-
CO2	S	М	L	S	-	-	_	-	-	-	-	-	L	М	-
1	1		L			l	l	L	l	l l		1	L	L	

CO3	S	М	М	S	-	-	-	-	-	-	-	-	L	М	L
CO4	S	М	М	М	-	-	-	-	-	-	-	-	L	L	М
CO5	S	М	М	-	-	-	-	-	-	-	-	L	М	М	М

S- Strong; M-Medium; L-Low

SYLLABUS

INFRASTRUCTURE: Definitions of infrastructure, Governing Features, Historical overview of Infrastructure development in India, Infrastructure Organizations & Systems.

INFRASTRUCTURE PLANNING: Typical infrastructure planning steps, Planning and appraisal of major infrastructure projects, Screening of project ideas, Life cycle analysis, Multi-criteria analysis for comparison of infrastructure alternatives, Procurement strategies, Scheduling and management of planning activities, Infrastructure Project Budgeting and Funding, Regulatory Framework, Sources of Funding.

PROJECT MANAGEMENT IN CONSTRUCTION: Introduction to project management processes - Initiating, Planning, Executing, Controlling, and Closing processes; Project Integration Management - Project plan development, Project plan execution, and Overall change control; Project Scope Management - Initiation, Scope planning, Scope definition, Scope verification, and Scope change control.

CONTRACTS AND MANAGEMENT OF CONTRACTS: Engineering contracts and its formulation, Definition and essentials of a contract, Indian Contract Act 1872, types of contracts and clauses for contracts, Preparation of tender documents, Issues related to tendering process, Awarding contract.

AIR QUALITY & SOLID WASTE MANAGEMENT: Sources, types and effects of air pollution and solid wasted is posaline activities, urban industrial processes and land use and transportation implications in air and solid waste pollution; norms, standards, laws, organizations and policies in urban air quality control and solid waste management; example stabilized organic fraction best practices.

TEXT BOOKS:

- 1. A. S. Goodman and M. Hastak, Infrastructure planning handbook: Planning, engineering, and economics, McGraw-Hill, New York, 2006.
- 2. J. Parkin and D. Sharma, Infrastructure planning, Thomas Telford, London, 1999.

3. P. Chandra, Projects: Planning, analysis, selection, financing, implementation, and review, Tata McGraw-Hill, New Delhi, 2009.

REFERENCES:

- 1. J. Kelly, S. Male and D. Graham, Value management of construction projects, Blackwell Publishing, Oxford, 2003.
- 2. Vasant Desai, "Project Management", Himalaya Publishing, 1st Edition, 2010
- 3. James C. Van Horne, John M. Wachowicz, "Fundamentals of Financial Management",
- 4. PHI, 2nd Edition, 2000 Ronald W Hudson, "Infrastructure Management: integrating design, Construction, maintenance, rehabilitation and renovation", MGH, 1st Edition, 1997.

COURSE	DESIGNERS			
S. No	Name of the Faculty	Designation	Name of the College	Mail ID
1.	R. Abirami	Asst. Prof-I	AVIT	abirami.civil@avit.ac.in
2	Dr.S.P.Sangeetha	HOD-Civil	AVIT	sangeetha@avit.ac.in

		U	RBAN	TRA	NSPO	RTAT	'ION		Categ	ory L		Т	Р	Credit
17CVSE28	I	NFRA	STRU			LANN	ING A	ND						
				DE	SIGN				EC(O	E) 3		0	0	3
PREAMBLE	1													
Helps in Desig	gn of I	ntersec	ctions,	Interch	anges,	Parkir	ng and '	Termin	al Faci	lities to) be pro	vided ina	an urba	an area
PREREQUIS	SITE													
NIL														
COURSE OF	BJECT	TIVES												
1 Helps in Design of Intersections, Interchanges, Parking and Terminal Facilities to be provided in an														
urban area														
2 The students would have gained knowledge on Rail Infrastructure Management														
3 The students would have gained knowledge on Design of Grade Separators and intersections														
4 The students would have gained knowledge on Design of Multi-Storey and Surface Parking facility														
5 The students would have gained knowledge on Design and Case Studies of Inter Modal Transfer														
Facilities														
COURSE OUTCOMES On the successful completion of the course, students will be able to														
CO1. The stud			-	uned k	nowlec	ige on	Kail In	irrastru	cture Pla	annıng,		Apply		
Operation and				inc.11	nor-1-		Dall	fract	atives Nr	200000			and	
CO2. The stud												Underst	and	
CO3. The stud intersections	Jents W	vouid l	iave ga	unea K	nowlec	ige on	Design	i of Gfa	ue Sepa	irators a	ana	Apply		
CO4. The stud	lanta	vould 1	1910 ~~	ined 1-	nowlas	100.00	Desiar	of M	lti Stani	ed and		Apply		
Surface Parkin			iave ga	uncu K	nowie(ize oli	Design	i of IVIU	ni stoll	cu allu		Apply		
CO5. The stud			าลงค.ศ.	ined k	nowled	ge on	Design	and C	ase Stuc	lies of I	nter			
Modal Transf			go	meu K		-50 011			abe brut	-100 UI I		Apply		
MAPPING V			GRAM	ME O	UTCO	MES	AND F	PROG	RAMM	E SPE	CIFIC	OUTCO	MES	
COS PO1	PO2	PO3	PO4	PO5		PO7			PO10	PO11	PO12	-	PS	PSO3
	102	103	104	105	100		100	107	1010	1011	1012		P3 02	1505
CO1 S	М	L	-	-	-	-	-	-	-	-	-	-	L	-
CO2 S	-	L	S	-	-	-	-	-	-	-	-	-	L	М
CO3 S	-	Μ	S	-	-	-	-	-	-	-	-	L	L	М
CO4 S	CO4 S M L L L													
CO5 S	М	Μ	-	-	-	-	-	-	-	-	L	L	L	М
S- Strong; M-	Mediu	m; L-I	Low								·	_ <u>.</u>	•	
SYLLABUS														
PRINCIPLE	S OF 1	INTE	RSECT	FION	DESIG	N: Ba	sic con	nsiderat	ions – s	implicit	y – unit	formity -	- Mano	beuvre

PRINCIPLES OF INTERSECTION DESIGN: Basic considerations – simplicity – uniformity – Manoeuvre Elements – Separation of conflict points – Design Elements – Design Speed – Intersection Curves – Super elevation for curves at Intersection – Intersection Sight Distance

DESIGN OF AT-GRADE INTERSECTIONS: Capacity and LOS, Design of Rotary and Signalised Intersections, Vehicle Actuated Signals, Signal Co-ordination, Area Traffic Control System (ATCS), Pedestrian Planning at Grade Intersections

DESIGN OF GRADE SEPARATED INTERSECTIONS: Design of Grade Separators – Principles , Design Criteria – Layout Design, GAD Preparation – Pedestrian Foot Over-bridge and Subway Design – Pedestrian

Planning for Grade Separated Intersections

PARKING FACILITIES : Parking – Demand – Characteristics – Space Inventory – Accumulation – Duration - Turn over - Index - Design of Multi Storey and Surface Parking facility

DESIGN OF TERMINAL FACILITIES: Bus Terminus - Design Principles - Design Elements - Design and Case Studies of Inter Modal Transfer Facilities – Design – Case Studies of Bus and Rail Terminals.

TEXT BOOKS:

- 1. Robert F Baker, (Edition) "Hand Book of Highway Engineering, Van Nostrand Reinhold Company, New York, 1975
- 2. Kanna, S.K. and Justo, C.E.G. "Highway Engineering, Nemchand.

REFERENCES:

1 .New Jersy, "Transportation and Traffic Engineering Hand Book, Institute of Transportation Engineers, Prentice Hall, INC, 1982

S.No	Name of the Faculty	Designation	Name of the College	Mail ID
1	S. Arvindan	Asst.Prof	AVIT	arvindsivasuriyan@avit.ac.in
2	Dr. D. S. Vijayan	Asso.Prof	AVIT	vijayan@avit.ac.in

17EECC14	ELECTRICAL MACHINES AND DRIVES	Category	L	Т	Р	Credit
		CC	3	0	0	3

Preamble

In a modern world the electric drives are essential for all the applications especially in mechanical engineering the Electrical drives represent a dominant source of mechanical power in various applications in production, material handling, and process industries etc. hence the course provides the magnificent knowledge about basic concepts, performance analysis of conventional and solid state control of electric drives which can help the mechanical engineer to understand and implement the concepts to various applications in engineering sector.

Prerequisite

17EEES03 -Basics of Electrical & Electronics EngineeringA. Basic Electrical Engineering

Course Objectives

1. To select appropriate electrical drive system based on their thermal factors.

2. To interpret the characteristics of DC motors and perform appropriate conventional control techniques for desired applications.

3. To interpret the characteristics of AC motors and perform appropriate conventional control techniques for desired applications.

4. To employ the solid state speed control techniques for DC drives for efficient control.

5. To employ solid state speed control techniques for AC drives for proficient and loss less control.

Course Outcomes

On the successful completion of the course, students will be able to

CO1. Define the conceptsof an electrical drive system and choose a suitable motor drive for	Remember
different applications.	
CO2. Explain the working principle with their characteristics and Predetermine the	Understand
performance of DC drives with various load and unload conditions.	
CO3.Interpret the conventional speed control methods of DC motors with starting, braking	Apply
Methods.	
CO4.Identify the parts of AC motors, Predetermine the performance of AC motors with their	Analyse
characteristics and Interpret the conventional speed control methods of AC motors with	
starting and braking methods.	
CO5. Evaluate the proficient control of AC and DC drives by utilize the power electronics	Evaluate
concepts.	

Mapping with Programme Outcomes and Programme Specific Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO29.	S	Μ			L								М	М	S
CO30.	S	S	М										М	М	М
CO31.	М	L	М	S									М	М	
CO32.	S	S		М									М	М	М
CO33.	S	М	S	Μ	М						М	М	S	М	М

S- Strong; M-Medium; L-Low

Introduction

Electrical Drives - Basic Elements of a drive system – Types of Electrical Drives –Multi quadrant operation of Electric Drive -Classes of duty – Selection of power rating for drive motors -Factors influencing the choice of electrical drives – Heating and cooling curves – Applications .

DC Drives

Constructional details of DC Motor – Principle of operation DC Motor – Back EMF and torque equations – Types of DC Motors – Characteristics of DC Motors – Starting of DC Motors – Types of Braking – Conventional Speed Control of DC Motors: Armature Voltage Control, Field Flux Control, Ward Leonard Control. Stepper motor: Permanent magnet stepper motor – Principle of operation – Applications.

AC Drives

Construction and operational details of Single and Three Phase Induction Motors – Types – Slip – Torque Equations – Speed-Torque Characteristics – Types of Starters – Types of Braking – Conventional Speed Control of Induction Motors – Construction and operational details of synchronous motor – Starting methods- types of Excitation -V curve and inverted V curve-Servomotor- Applications.

Solid State Drives and Speed Control of DC Drives

Introduction of Solid state Drives- Functional block diagram and advantages of Solid state Drives – Converter – Phase control- Single Phase and Three Phase Fully controlled Converter: Principle of operation and waveforms of single phase and three phase fully controlled converter fed DC drive – Chopper - Control strategies- Choppers Fed DC Motor Drive – Applications.

Solid State Speed Control of AC Drives

Inverter, AC voltage controller and Cycloconverter - Voltage Source Inverter and Current Source Inverter – VSI fed Three Phase Induction Motors – CSI Fed Three Phase Induction Motors- Cycloconverter Fed Induction Motor Control -Voltage/Frequency Control of induction motor, Static Rotor Resistance Control – Static Scherbius and static Kramer Drives block diagram and explanation – Applications.

TEXTBOOKS

1 Gopal.K.Dubey,"Fundamentals of Electrical Drives" Narosa Publishing House, 2001 2 Theraja,B.L and Theraja, A.K., "A text book of Electrical Technology – Volume II (AC & DC Machines)" S.Chand& Company Ltd., New Delhi, 2016.

REFERENCES

COUDER DEGLENERS

1 VedamSubrahmanyam, "Electric Drives Concepts and Applications" Tata McGraw Hill Publishing Company Ltd., New Delhi, 1998.

2 M.D.Singh and K.B. Khanchandani, "Power Electronics", Tata McGraw Hill Publishing Company Ltd., New Delhi, 2008

COUR	KSE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.G.Ramakrishnaprabu	Associate Professor	EEE/VMKVEC	ramakrishnaprabu@vmkvec.edu.in
2	Mr.N.P.Gopinath	Assistant Professor	EEE/AVIT	gopinathnp@avit.ac.in

17EECC16	POWER ELECTRONICS AND DRIVES	Category	L	Т	Р	Credit
		CC	3	0	0	3

PREAMBLE

Power electronics deals with the processing and control of 'raw' electrical power from an electrical source such as an AC mains supply, a battery bank, a photovoltaic array, or a wind turbine into a form and quality suitable for a particular electrical load. It is an enabling technology with a very wide range of applications, such as a cell phone charger, a personal computer, a microwave oven, an MRI system, a hybrid electric car, or even the electrical grid. As can be noted, the power levels handled can vary from a few watts to several hundreds of megawatts. In this course, we will study the basic principles behind the power electronic circuits used in most such power processing applications. These circuits include power converters for DC to DC, DC to AC and AC to DC applications.

PREREQUISITE-NIL

COUR	SE OBJECTIVES
1	To get an overview of different types of power semiconductor devices and their switching characteristics.
2	To understand the operation, characteristics and performance parameters of controlled rectifiers.
3	To study the operation, switching techniques and basics topologies of DC-DC switching regulators.
4	To learn the different modulation techniques inverters and to understand harmonic reduction methods.
5	To study the operation of AC voltage controller.

COURSE OUTCOMES

On the successful completion of the course, students will be able to

CO1:Thebasic semiconductor physics to the properties of real power semiconductor devices and Remember differentiate from low power devices.

CO2:Theconcepts of operation of AC-DC converters in steady state and transient state of both continuous understand and discontinuous modes.

CO3: Classify and design choppers for simple electrical application

CO4: Identify the proper gating sequence and control circuit in operating the single phase and three phase Analyze inverter circuits.

Apply

Understand

Analyze

CO5:Analyze the performance parameter, various techniques for analysis and design of AC voltage Analyze controller and also list the various control schemes in cycloconverter.

CO6:Describe the concepts of electric machines.

CO7: Implement the power electronics concepts to AC & DC drives to made the effective control

MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	Μ	Μ	Μ	L	L	-	L	L	L	L	L	L	S	-
CO2	S	S	Μ	Μ	L	-	М	-	-	-	-	-	М	М	-
CO3	S	S		Μ	L	М	M-	-	М	М	-	-	М	S	-
CO4	S	S	S	Μ	S	-	М	-	М	М	-	-	М	М	-
CO5	Μ	S	-	Μ	S	-	М	-	-	М	-	-	М	М	-
CO6	Μ	S	Μ	S	-	-	Μ	-	-	М	-	-	L	М	-
CO7	Μ	Μ	Μ	S	Μ	М	-	-	-	-	-	-	М	М	-

S- Strong; M-Medium; L-Low-

POWER SEMI-CONDUCTOR DEVICES

Overview of switching devices – Driver and snubber circuit of SCR TRIAC, GTO, IGBT, MOSFET – Computer simulation of PE circuits.

RECTIFIERS & CHOPPERS

Introduction-2 pulse / 3 pulse and 6 pulse converters – Dual converters. Basic Principles of Choppers - Stepdown and stepup chopper – Time ratio control and current limit control – Buck, Boost, Buck-Boost converters.

INVERTERS & AC - AC CONVERTERS

Single phase and three phase [120°& 180° mode] inverters – PWM techniques – Sinusoidal PWM, Modified sinusoidal PWM and multiple PWM.

Single phase AC voltage controllers – Multistage sequence control – single phase and three phase cycloconverter.

ELECTRICAL DRIVES

Type of Electrical Drives – Selection & factors influencing the selection – heating and cooling curves _ loading condition and classes of duty _ determination of rating simple power problems.

SOLID STATE DRIVES (QUALITATIVE TREATMENT ONLY)

Advantages of solid state drives – D.C. motor control using rectifiers and choppers control of induction motor by V. V/f and slip power recovery scheme using inverters A.C. and power regulators.

Total Hours : 45

TEXT BOOKS:

- 1. Rashid M.H., "Power Electronics Circuits, Devices and Applications", Prentice Hall India, 3rd Edition, New Delhi, 2004.
- 2. G.K. Dubey "Fundamental Electrical Drives" second edition 2002, Narosa Publications, Second edition, 2002.

REFERENCES:

- 1. Cyril.W.Lander, "Power Electronics", McGraw Hill International, Third Edition, 1993.
- 2. P.S.Bimbra "Power Electronics", Khanna Publishers, third Edition 2003.
- 3. Philip T.Krein, "Elements of Power Electronics" Oxford University Press, 2004Edition.
- 4. N.K.De., P.K.Sen "Electric Drives", Prentice Hall, First edition 1999.
- 5. Pillai, S.K., "A First course on Electrical Drives", Wiley Eastern Ltd., New Delhi, 1982

S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr.A.Balamurugan	Assistant Professor	EEE/VMKVEC	balamurugan@vmkvec.edu.in
2	Mr.N.P.Gopinath	Assistant Professor (Gr-II)	EEE/AVIT	Gopinathnp@avit.ac.in

17ECCC07	MICROCONTROLLERS &	Category	L	Т	Р	Credit
T/ECCC0/	ITS APPLICATIONS	CC	3	0	0	3

PREAMBLE

Microcontroller is used as the main controller in most of the embedded systems nowadays. Due to the development in VLSI technology, microcontrollers evolve which function similar to microprocessors but they have most of the peripherals built on-chip. This course makes the students to be familiar with the architecture and programming of Microcontrollers. This course also introduces the architecture and hardware features of PIC 16F877 and ARM7 (LPC2148) microcontrollers.

PREREQUISITE - Nil

COUR	SE OB	JECTI	VES												
1	To lea	arn the c	concepts	s of mic	croproc	essors	and kno	owledge	of inte	erfacing of	levices.				
2	To stu	udy the .	Archite	cture of	f 8051 i	nicroco	ontrolle	er							
3	To dev	velop sk	ill in si	nple pr	ogram	writing	g of mic	crocontr	oller						
4	To study the interfacing and applications of microcontroller														
5	To study the advanced microcontrollers.														
COUR	SE OU	тсом	ES												
On the	success	ful com	pletion	of the o	course,	studen	ts will l	be able	to						
CO1. E	Explain t	he conc	ept of r	nicropr	ocesso	r and in	terfaci	ng devi	ces.					Understan	d
CO2. E	Explain t	he arch	itecture	and fu	nction (of 8051	micro	controll	er					Apply	
CO3. I	Design a	nd impl	ement p	progran	ns on 80	051 Mi	crocon	troller						Analyze	
CO4. I	Design a	nd impl	ement a	applicat	ions us	ing 805	51 Mici	rocontro	oller					Analyze	
CO5. I	llustrate	various	s applica	ations u	ising ac	lvanced	d Micro	ocontrol	lers.					Analyze	
MAPP	'ING W	TTH PI	ROGRA	AMME	E OUT	COME	S ANI) PRO	GRAM	ME SPE	ECIFIC	OUTCO	OMES	5	
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1 PSO2	PSO3
CO1	S	S	М	-	М	-	-	-	-	-	-	Μ	S	-	-
CO2	S	S	S	-	М	-	-	-	-	-	-	Μ	-	-	-
CO3	S	М	М	-	М	М	-	-	-	-	-	М	Μ		-
CO4	S	S	М	-	М	М	-	-	-	-	-	М	Μ	М	-
CO5	S	М	S	-	Μ	Μ	-	-	-	-	-	Μ	S	М	М
S- Stro	ng; M-N	Aedium	; L-Lov	V											

SYLLABUS

INTEL 8086 MICROPROCESSOR & I/O INTERFACING

Introduction to 8086 - Architecture of 8086 - Register organization – Signal Description of 8086 - Addressing modes – Data Transfer Instruction – Arithmetic Instruction - Branching Instruction - Program Transfer Instruction – simple programs- Programmable Peripheral Interface 8255 – Programmable Communication Interface 8251 USART – Programmable Interrupt Controller 8259A – Direct Memory Access Controller 8257- Programmable Interval Timer 8253 – Keyboard/Display Controller 8279.

INTEL 8051 MICROCONTROLLER

Introduction to 8 bit microcontroller – architecture of 8051- Signal descriptions of 8051- Role of PC and DPTR- Flags and PSW- CPU registers- Internal RAM & ROM- Special Function Register-Counter & Timers- Serial Communication.

ASSEMBLY LANGUAGE PROGRAM OF INTEL 8051

Interrupt- Addressing Mode- Data Transfer Instruction- Arithmetic Instruction- Logical Instruction- Jump Loop & Call Instruction- I/O Port Programming.

INTERFACING AND APPLICATION OF INTEL 8051

LCD Interfacing - A/D and D/A Interfacing- Sensor Interfacing- Relays and Optoisolators- Stepper Motor Interfacing-DC Motor Interfacing.

ADVANCED MICROCONTROLLERS

PIC 16F877 microcontroller – Architecture On chip ADC, I^2C – SPI – Watchdog timer – ARM7 (LPC2148) microcontroller – Architecture and applications.

TEXTBOOKS:

- 1. Muhammad Ali Mazidi and Janica Gilli Mazidi, The 8051 microcontroller and embedded systems, Pearson Education, 5th Indian reprint, 2003.
- 2. Frank D. Petruzella. "Programmable Logic Controllers", McGraw-Hill Book, Company, 1989

REFERENCE BOOKS:

- 1. B.P. Singh, Microprocessors and Microcontrollers, Galcotia Publications (P) Ltd, First edition, New Delhi, 1997.
- 2. Embedded Controller Hand book, Intel Corporation, USA.
- 3. Microcontroller Hand Book, INTEL, 1984.
- 4. Ajay V.Deshmukh, "Microcontrollers- Theory and applications", Tata McGraw-Hill, publisher, 2005.

COUR	COURSE DESIGNERS												
S.No.	Name of the	Designation	Department	Mail ID									
	Faculty												
1	Mr.S.Selvam	Assistant Professor	ECE	selvam@avit.ac.in									
2	Mr.R.Ramani	Assistant Professor	ECE	ramani@vmkvec.edu.in									
3	Mr.G.Sureshkumar	Assistant Professor	ECE	sureshkumar@vmkvec.edu.in									

17EC	CC18	IN			F THI RONI	NGS FO	R	Cate	gory	I	_	Т	Р	Cre	edit
TILC	0010		E		NOIN	eb		С	С	3	3	0	0	í.	3
PREA	MBLE	1													
The pu	irpose o	of this	course	is to in	mpart l	knowledg	e on I	nternet	of Thi	ngs (IoT), which	relates	to the st	tudy of s	ensors,
						r Things					mples o	verview	(buildi	ng auto	mation,
				ndustr	y, etc.)	with a fo	cus on	wearat	ole elec	tronics					
PRER	EQUIS	SITE -	Nil												
COUR	RSE OF	BJECT	IVES												
1	Under	standi	ng of Io	oT valu	ie chaii	n structur	e (dev	ice, dat	a cloud), applic	ation are	eas and t	echnolo	gies invo	olved
2	Under	stand	loT ser	isors ai	nd tech	nological	challe	enges fa	ced by	IoT dev	ices, wit	th a focu	s on wir	eless, en	ergy,
2			nd sens												
3						with a foc									
4						of Things				paring p	rojects o	designed	for Ras	pberry P	i
5	To stu	idy the	advan	ced int	ernet o	f things fo	or elec	etronics							
COUR	RSE OU	JTCO	MES												
On the	succes	sful co	mpletio	on of tl	ne cour	se, studer	nts wil	l be abl	e to						
CO1. I	Explain	the co	ncept o	f Inter	net of 7	Things.								Unders	tand
CO2. I	Explain	the IO	T Sens	ors To	Appea	r								Apply	
CO3. I	Design a	and im	plemer	nt of te	chnolo	gical ser	isors							Analyz	e
CO4. I	Design	and im	plemer	t appli	cations	using in	nternet	of thin	gs					Analyz	e
CO5. I	Explain	the ad	vanced	intern	et of th	ings used	l in dif	ferent a	pplicat	ions.				Analyz	e
MAPF	PING V	VITH	PROG	RAM	ME OU	JTCOM	ES AN	D PRO	OGRA	MME S	PECIFI	C OUT	COMES	5	
COS	PO1	PO2	PO3	PO4	PO5	PO6 F	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	L	L	-	L	-	-	-	-	-	-	М	S	-	-
CO2	L	S	S	-	М	-	-	-	-	-	_	М	-	-	-
CO3	S	Μ	Μ	-	L	М	-	-	-	-	-	Μ	Μ	-	Μ
CO4	S	L	L	-	L	S	-	-	-	-	-	М	М	М	Μ
CO5	М	М	S	-	Μ	L	-	-	-	-	-	М	-	М	Μ
S- Stro	ong; M-	Mediu	m; L-L	ow											
SYLL	ABUS														
INTR	ODUC'	ΓΙΟΝ													
		0				Scope–Se NSORS 7				ations–S	Structure	e of IoT-	-IoT Maj	p Device	:
Industr	rial sei	isors	–Descr	iption	& Cl	haracteris stics–Inte	stics-F	irst G	eneratio		-				

Generation –Description & Characteristics–Integrated IoT Sensors –Description & Characteristics–Polytronics Systems –Description & Characteristics–Sensors' Swarm –Description & Characteristics–Printed Electronics – Description & Characteristics–IoT Generation Roadmap

TECHNOLOGICAL ANALYSIS

Wireless Sensor Structure-Energy Storage Module-Power Management Module-RF Module-Sensing Module

IOT DEVELOPMENT EXAMPLES

ACOEM Eagle – EnOcean Push Button – NEST Sensor – Ninja Blocks - Focus on Wearable Electronics

PREPARING IOT PROJECTS

Creating the sensor project -Preparing Raspberry Pi -Clayster libraries -Hardware-Interacting with the hardware -Interfacing the hardware-Internal representation of sensor values -Persisting data -External representation of sensor values -Exporting sensor data -Creating the actuator project-Hardware -Interfacing the hardware -Creating a controller -Representing sensor values -Parsing sensor data -Calculating control states -Creating a camera -Hardware -Accessing the serial port on Raspberry Pi -Interfacing the hardware -Creating persistent default settings -Adding configurable properties -Persisting the settings -Working with the current settings -Initializing the camera

REFERENCE BOOKS:

- 1. Dr. Guillaume Girardin , Antoine Bonnabel, Dr. Eric Mounier, 'Technologies & Sensors for the Internet of Things Businesses & Market Trends 2014 -2024', Yole Développement Copyrights ,2014
- 2. Peter Waher, 'Learning Internet of Things', Packt Publishing, 2015
- 3. Editors OvidiuVermesan Peter Friess, Internet of Things From Research and Innovation to Market
- 4. Deployment', River Publishers, 2014
- 5. N. Ida, Sensors, 'Actuators and Their Interfaces', Scitech Publishers, 2014.
- 6. Qusay F. Hassan,'Internet of things a to z: technologies and applications' ,John Wiley and Sons Ltd, 2018

COUR	SE DESIGNERS			
S.No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr. L. K. Hema	Professor	ECE	hemalk@avit.ac.in
2	Mr.G.Ramachandran	Assistant	ECE	ramachandrang@vmkvec.edu.in
		Professor		
3	Mr.R.Ramani	Assistant	ECE	ramani@vmkvec.edu.in
		Professor		
4	Mr.G.Sureshkumar	Assistant	ECE	sureshkumar@vmkvec.edu.in
		Professor		

1700	ECO		N / T			CEN	COD	r	С	ategor	y]	L	ΓΡ	Cr	edits		
17EC	ECU6		N	EMS	AND	SEN:	SOR?	•		C (PS	•	3 (0 0		3		
PREA			-														
To gai design												vstem)	. This e	nables t	nem to		
PRER					a test	the w	IEMS	Dase		ponen	ls.						
COU																	
1	То и	inder	stand	the co	ncept	s of b	asic N	ЛЕМЯ	S struc	ctures.							
2	To l	earn a	about	the va	rious	MEM	IS Se	nsors	and it	s cons	tructio	on.					
3	To learn about the micro machining products.																
4	To understand the functioning of various optical MEMS Sensors.																
5	To study the various applications of MEMS Sensors																
Cours	e Ou	tcom	es														
On the	e succ	essfu	l com	pletio	n of tl	ne cou	ırse, s	tuden	ts will	l be ab	le to						
CO1.	Under	stand	l the b	asic f	abrica	tion o	of ME	MS s	ystem	s.			1	Understa	nd		
CO2. 1	Desig	n var	ious N	/EMS	sens	ors fo	r reau	uired a	npplic	ations.				Apply			
CO3.A fabrica	Apply						1		11			senso	r	Apply			
CO4. 4	Analy	ze th	e light	t sour	ce util	izatio	n in N	MEM S	S sens	ors.				Analyz	e		
CO5. I	Evalu	ate th	e vari	ous re	eal tin	ne app	licati	ons of	f MEN	AS Ser	nsors.			Evaluat	e		
			TH	PRO	GRA	MMI	E OI	UTCO	OMES	S AN	D P	ROG	RAMM	E SPE	CIFIC		
OUTO			DO	DO	DO	DO	DO	DO	DO	DO	DO	DO		I			
COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3		
CO1	L	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
CO2	S	L	Μ	-	-	-	-	-	-	-	-	L	М	М	-		
CO3	L	S	Μ	-	L	-	-	-	-	-	-	L	-	S	-		
CO4	S	S	S	-	M	-	-	-	-	-	-	L		<u>M</u>			
$\frac{\text{CO5}}{\text{S} - \text{Sti}}$	S	S	S	- T	M	Μ	Μ	Μ	-	-	-	L	S	М	М		

<u>S – Strong; M – Medium; L – Low</u> SYLLABUS

INTRODUCTION

MEMS and Microsystems, Typical products of MEMS and Microsystem products, Micro sensors, Micro actuator, Evolution of Micro fabrication, Microsystems and Microelectronics, MEMS materials.

MICRO SENSORS AND MICROSYSTEMS

Micro sensors- Acoustic wave sensors, Biomedical Sensors and Biosensors, Optical Sensors, Pressure sensors, Micro actuation- Actuation using Thermal Forces, Piezoelectric Crystals, Electrostatic Forces, MEMS with Micro actuators- Micro grippers, Micro motors, Micro valves, Micro accelerometers.

PRINCIPLES OF MICROMACHINING

Introduction, Photolithography, Bulk Micromachining, Thin Film Deposition, Etching, surface Micromachining, LIGA

OPTICAL MEMS

Fundamental Principle of MOEMS Technology, Review Properties of Light, Light Modulators, Beam Spliotter, Micro lens, Micro mirrors, Digital Micro mirror Device (DMD),Light Detectors, Grating Light Valve, Optical Switch.

REAL TIME UTILISATION OF MEMS SENSORS

Health Care, Micro fluid Dispenser, Micro needle, Micro pumps, Chem-Lab-On-A-Chip(CLOC), E-Nose, DNA sensors, Surface Acoustic Wave(SAW) Sensors.

TEXT BOOKS:

- 1. Tai Ran Hsu," MEMS & Micro systems Design and Manufacture" Tata McGraw Hill, New Delhi, 2002. Liu,"MEMS", Pearson education, 2000.
- 2. N. P. Mahalik, "MEMS", Tata McGraw hill, Sixth reprint, 2012.

REFERENCE BOOKS:

- 1. Stephen Santeria," Microsystems Design", Kluwer publishers, 2000.
- 2. Nadim Maluf," An introduction to Micro electro mechanical system design", ArtechHouse, 2000.
- 3. Mohamed Gad-el-Hak, editor," The MEMS Handbook", CRC press Baco Raton, 2000 URSE DESIGNERS

COURSE	DESIGNERS

S.No	Name of the Faculty	Designation	Dept	Mail ID				
1	R. Karthikeyan	Assistant Professor	ECE	rrmdkarthikeyan@avit.ac.in				
		(Gr-II)	LCL	iiiiukaiuiikeyan@avit.ac.iii				
2	Mr.G.Ramachandran	Assistant Professor	ECE	ramachandran@vmkvec.edu.in				

170	CSEC0	9		ETH	HICAL	HAC	KING			(Category	/ L	Т	P C	Credit
											EC	3	0	0	3
	MBLE			2						I			II		
	lyze th		concep	ots of se	ecurity	and ha	cking p	process							
NIL	EQUI	511E													
	RSE OI	BJECT	IVES												
1	To ur	Idersta	nd Tech	nnical f	oundat	ion of a	crackin	g and e	thical l	hacking					
2	To id	entify A	Aspects	of sec	urity, i	mporta	nce of	data ga	thering	, foot pr	inting a	nd syster	n hacki	ng	
3	To understand evaluation of computer security														
4	To understand Practical tasks will be used to re-enforce and apply theory to encourage an analytical and problem based approach to ethical hacking														
5	To discuss about security tools and its applications														
COUF	RSE OU	UTCO	MES												
On the	succes	sful co	mpletic	on of th	e cours	se, stud	ents w	ill be al	ole to						
CO1: I compro					es an e	thical h	acker 1	require	s to tak	e in orde	er to	Underst	and		
CO2: I	dentify	tools a	and tech	nniques	to car	ry out a	a peneti	ration t	esting.			Underst	and		
		• •		•	-		-	•		nd user d		Apply			
CO4: I of polic							the con	cepts o	f secur	ity at the	e level	Apply			
CO5: 7	Го appl	y infor	mation	securit	y featu	res in r	eal tim	e				Apply			
MAPH	PING V	VITH	PROG	RAMN	AE OU	TCON	AES A	ND PF	ROGRA	AMME	SPECI	FIC OU	TCOM	IES	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	М	М	-	-	-	-	S	-	-	-	М	Μ	М	М	М
CO2	Μ	Μ	S	Μ	-	-	-	-	-	-	L	Μ	Μ	М	S
CO3	М	Μ	М	М	-	М	-	L	-	-	L	-	S	S	M
CO4	М	S	М	-	-	М	-	- -	-	М	-	M	M	M	M
CO5	M ong; M-	M Mediu	- m·I_I	- 0W	S	Μ	-	L	-	-	М	М	М	S	М
5-500	, wi	witculu.	III, L-L	0 10											

SYLLABUS INTRODUCTION

Introduction to Hacking, Types of Hacking, Hacking Process, Security – Basics of Security- Elements of Security, Penetration Testing, Scanning, Exploitation- Web Based Exploitation. Simple encryption and decryption techniques implementation.

HÂCKING TECHNIQUES

Building the foundation for Ethical Hacking, Hacking Methodology, Social Engineering, Physical Security, Hacking Windows, Password Hacking, and Privacy Attacks, Hacking the Network, Hacking Operating Systems- Windows & Linux, Application Hacking, Footprinting, Scanning, and Enumeration. Implementing System Level Hacking- Hacking Windows & Linux.

WEB SECURITY

Evolution of Web applications, Web application security, Web Application Technologies- Web Hacking, Web functionality, How to block content on the Internet, Web pages through Email, Web Messengers, Unblocking applications, Injecting Code- Injecting into SQL, Attacking Application Logic. Check authentication mechanisms in simple web applications. Implementation of Web Data Extractor and Web site watcher. Implementation of SQL Injection attacks in ASP.NET.

WIRELESS NETWORK HACKING

Introduction to Wireless LAN Overview, Wireless Network Sniffing, Wireless Spoofing, Port Scanning using Netcat, Wireless Network Probing, Session Hijacking, Monitor Denial of Service (DoS) UDP flood attack, Man-in-the-Middle Attacks, War Driving, Wireless Security Best Practices, Software Tools, Cracking WEP, Cracking WPA & WPA-II. Implementation- Locate Unsecured Wireless using Net-Stumbler/ Mini-Stumbler.

APPLICATIONS

Safer tools and services, Firewalls, Filtering services, Firewall engineering, Secure communications over insecure networks, Case Study: Mobile Hacking- Bluetooth-3G network weaknesses, Case study: DNS Poisoning, Hacking Laws. Working with Trojans using NetBus.

TEXT BOOKS

1. Stuart McClure, Joel Scambray, George Kurtz, "Hacking Exposed 6: Network Security Secrets & Solutions", Seventh edition, McGraw-Hill Publisher, 2012.

2. Kevin Beaver, "Hacking for Dummies" Second Edition, Wiley Publishing, 2007.

3. Dafydd Stuttard and Marcus Pinto, "The Web Application Hacker's Handbook: Discovering and Exploiting Security Flaws" Wiley Publications, 2007.

4. Ankit Fadia, "An Unofficial Guide to Ethical Hacking" Second Edition, Macmillan publishers India Ltd, 2006. **REFERENCES**

1. Hossein Bidgoli, "The Handbook of Information Security" John Wiley & Sons, Inc., 2005.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Dr.R.Jaichandran	Associate Professor(G-II)	CSE	rjaichandran@avit.ac.in
2	M. Annamalai	Assistant Professor	CSE	annamalaim@vmkvec.edu.in

17CS	SEC11			GR	EEN C	OMPU	TING			(Category	L	Т	P C	Credit
											EC	3	0	0	3
PREAM To acquin		vledge	to ador	t green	compu	ting pre	octices	and To	learn al	out ener	ov savin	a practic	26		
PRERE NIL		ē		<i>n</i> green	compu	ting pre					gy savin	<u>g practice</u>			
COURS	E OB.	JECTI	VES												
1	To acc	luire kn	nowledg	ge to ad	opt gree	en comj	puting p	oractice	s						
2	To mi	nimize	negativ	e impa	ets on th	ne envir	onmen	t							
3	To lea	rn abou	ıt energ	y savin	g practi	ces									
4	To learn about green compliance. And implementation using IT														
COURS	COURSE OUTCOMES														
On the s	On the successful completion of the course, students will be able to														
CO1: Ex			•							tices		Understa	and		
CO2: De environm		nd deve	elop the	green	asset us	sed to n	ninimiz	e negat	ive imp	acts on t	he	Apply			
CO3: Ide							and infr	astructi	ure for			Apply			
CO4: Ma and carbo	ake use	e of an l					ng prac	tices ,th	ne impa	ct of e-w	vaste	Apply			
CO5: An			reen co	mplian	ce, imp	lementa	ation us	ing IT a	and deri	ive the ca	ase	Analyze			
study. MAPPI		ITH D		<u> </u>		COME				ME ODE	CIEIC	•			
									1	1	1			DCOA	DCO2
COs 1 CO1 1	PO1 S	PO2	PO3 S	PO4	PO5	PO6	РО7 М	PO8	PO9	PO10	PO11	PO12	PSO1 S	PSO2	PSO3
CO1	S	- S	M	-	- L	-	S	- S	-	M	-	M	M	S	_
CO3	S	M	M	-	L _	M	S	M	-	-	-	-	M	M	М
CO4	S	S	-	-	-	-	S	S	-	М	-	М	М	М	-
CO5	S	М	М	-	-	S	М	-	М	-	М	S	М	М	-
S- Strong	g; M-N	ledium	; L-Lov	N											

SYLLABUS FUNDAMENTALS

Green IT Fundamentals: Business, IT, and the Environment – Benefits of a Green Data Centre - Green Computing:Carbon Foot Print, Scoop on Power–GreenITStrategies: Drivers, Dimensions, and Goals – Environmentally Responsible Business: Policies, Practices, and Metrics.

GREEN ASSETS AND MODELING

Green Assets: Buildings, Data Centres, Networks, Devices, Computer and Earth Friendly peripherals, Greening Mobile devices – Green Business Process Management: Modelling, Optimization, and Collaboration – Green Enterprise Architecture – Environmental Intelligence – Green Supply Chains – Green Information Systems: Design and Development Models.

GRID FRAMEWORK

Virtualizing of IT Systems – Role of Electric Utilities, Telecommuting, Teleconferencing and Teleporting – Materials Recycling – Best Ways for Green PC – Green Data Center – Green Grid Framework. Optimizing Computer Power Management, Systems Seamless Sharing Across. Collaborating and Cloud Computing, Virtual Presence.

GREEN COMPLIANCE

Socio-Cultural Aspects of Green IT – Green Enterprise Transformation Roadmap – Green Compliance: Protocols, Standards, And Audits – Emergent Carbon Issues: Technologies and Future. Best Ways to Make Computer Greener.

GREEN INITIATIVES WITH IT and CASE STUDIES

Green Initiative Drivers and Benefits with IT - Resources and Offerings to Assist Green Initiatives. - Green Initiative Strategy with IT - Green Initiative Planning with IT - Green Initiative Implementation with IT - Green Initiative Assessment with IT. The Environmentally Responsible Business Strategies (ERBS) – Case Study Scenarios for Trial Runs – Case Studies – Applying Green IT Strategies and Applications to a Home, Hospital, Packaging Industry and Telecom Sector.

TEXT BOOKS

1.Bhuvan Unhelkar, —Green IT Strategies and Applications-Using Environmental Intelligence^{II}, CRC Press, June 2011 2.Carl Speshocky, —Empowering Green Initiatives with IT^I, John Wiley and Sons, 2010.

REFERENCES

1. Alin Gales, Michael Schaefer, Mike Ebbers, —Green Data Center: Steps for the Journeyl, Shoff/IBM rebook, 2011.

2. John Lamb, —The Greening of ITI, Pearson Education, 2009.

3. Jason Harris, —Green Computing and Green IT- Best Practices on Regulations and Industryl, Lulu.com, 2008.

COUR	COURSE DESIGNERS										
S. No.	Name of the Faculty	Designation	Department	Mail ID							
1	K.Karthik	Associate Professor	CSE	karthik@avit.ac.in							
2	Mrs.T.Narmadha	Assistant Professor	CSE	narmadha@vmkvec.edu.in							

17C	SEC24			OPEN	SOUF	RCE SY	STEM	IS		(Category	L	Т	Р	Credit
											EC	3	0	0	3
PREAMBLE The purpose of an open standard is to increase the market for a technology by enabling potential consumers or suppliers of that technology to invest in it without having to either pay monopoly rent or fear litigation on trade secret, copyright, patent, or trademark causes of action. No standard can properly be described as "open" except to the extent it achieves these goals.															
PREREQUISITE NIL															
	NIL COURSE OBJECTIVES														
1	Students will study common open source software licenses, open source project structure														
2	To understand distributed team software development, and current events in the open source world														
3	To learn free and open source components & tools														
4	Students will also work on an open source project and will be expected to make a significant contribution														
COUR	SE OU	TCOM	IES												
On the successful completion of the course, students will be able to															
CO1: E	xplain o	commo	n open	source l	icenses	and th	e impac	ct of cho	oosing a	a license		Understa	and		
CO2: A	nalyze	the ope	en sourc	e projec	et struct	ure and	l how to	o succes	ssfully s	setup a p	roject	Analyze			
CO3 Aj	pply the	linux l	based us	ser prof	ile, file	securit	y, and f	ïle link	and ma	inageme	nt.	Apply			
СО4: К	Inowled	lge of fi	ree and	open so	ource to	ols like	libre o	ffice, oj	pen offi	ice.		Apply			
	CO4: Knowledge of free and open source tools like libre office, open office. Approv CO5: Apply the libre office- presentation like create, open, adding slide, text, background. Apply														
MAPP	ING W	TTH P										DUTCO	MES	_	
COs	PO1	PO2		PO4		PO6	PO7	PO8	PO9	PO10	PO11				2 PSO3
CO1 CO2	S	L	L	-	L	-	-	-	-	-	-	S M	- M	M M	M M
CO2 CO3	S S	M M	M M	- M	- -	-	-	-	-	-	-	M	M	M	M
CO3	S S	S	L	M	М	-	-	-	_	-	-	M	M	-	M
CO5	S	М	L	М	-	-	-	-	-	-	-	М	S	-	М
S- Stro	S- Strong; M-Medium; L-Low														

SYLLABUS OPEN SOURCE LICENSING

Open Source Licensing, Contract, and Copyright Law-The MIT, BSD, Apache, and Academic Free Licenses-The GPL, LGPL, and Mozilla Licenses-Qt, Artistic, and Creative Commons Licenses-Non-Open Source Licenses.

OPEN SOURCE OPERATING SYSTEM

Linux history-distributions-licensing-installing Linux-working with directories-working with files-working with file contents-the Linux file tree. shell expansion: commands and arguments-control operators-shell variables-file globing. Pipes and commands: I/O redirection-filters -regular expressions. Introduction to vi – scripting: scripting introduction-scripting loops-scripting parameters

LINUX USER MANAGEMENT

local user management- introduction to users-user management-user passwords-user profiles -groups. file security: standard file permissions-advanced file permissions-access control lists-file links.

LIBRE OFFICE – WORD, SPREAD SHEET

Introduction of libre office- WRITER — THE WORD PROCESSOR: Opening a Document -Laying Out the Page-Setting paper size, margins, and orientation -Creating headers and footers -Numbering pages -Entering and Editing Text-Modifying text-Moving and copying text.

CALC — THE SPREADSHEET: Creating a Spreadsheet -Inputting Your Data -Entering your data -Editing your data -Filling cells automatically -Managing Columns and Rows-Copying, pasting, cutting, dragging, and dropping your cells -Adding the Art -Formula Basics.

LIBRE OFFICE- PRESENTATION

IMPRESS — THE PRESENTATION Creating a Presentation -Opening an existing presentation -Adding Slides -Adding text to a slide -Saving Your Presentation for Posterity - Making Presentations Picture Perfect -Adding Images -Clipping art -Drawing objects -Coloring Backgrounds - Creating a plain-colored background -Creating a gradient background.

TEXT BOOKS

1. Understanding Open Source and Free Software Licensing By Andrew M. St. Lauren , August 2004 , Pages: 207. (Unit I)

2. Linux study link : <u>https://itsfoss.com/learn-linux-for-free/</u> (Unit II & Unit III).

3.https://www.libreoffice.org/assets/Uploads/Documentation/en/GS51-GettingStartedLO.pdf (Unit IV & V)

REFERENCES

1. Andy channelle (2009), "Beginning OpenOffice 3", Aprèss.

2. Ellen Siever, Stephen Figgins, Robert Love, Arnold Robbins, "Linux in a Nutshell", Sixth Edition, OReilly Media, 2009.

3. N. B. Venkateshwarlu (Ed); Introduction to Linux: Installation and Programming, B S Publishers; 2005.

4. Matt Welsh, Matthias Kalle Dalheimer, Terry Dawson, and Lar Kaufman, Running Linux, Fourth Edition, O'Reilly Publishers, 2002.

5. Carla Schroder, Linux Cookbook, First Edition, O'Reilly Cookbooks Series, 2004.

S. No.	Name of the Faculty	Designation	Department	Mail ID			
1	K. Karthik	Assistant Professor	CSE	karthik@avit.ac.in			
2	Mr.M.Annamalai	Assistant Professor	CSE	annamalaim@vmkvec.edu.in			

17CSEC32				VI	RTUAI	L REA	LITY				Category	L	Т	P C	credit
											EC	3	0	0	3
	PREAMBLE This service provides a detailed understanding of the concents of Virtual Reality and its application														
	This course provides a detailed understanding of the concepts of Virtual Reality and its application. PREREQUISITE														
NIL	NIL														
COURSE OBJECTIVES															
1	To Learn Geometric modeling and Virtual environment														
2	To Learn Virtual Hardware and Software														
3	To Le	arn Vir	tual Re	ality ap	plicatio	ns									
COUR	COURSE OUTCOMES														
On the	On the successful completion of the course, students will be able to														
CO1 : D	CO1: Differentiate between Virtual, Mixed and Augmented Reality platforms. Understand														
CO2: Id especial	•	TT T		0		gies fo	r immer	rsive teo	chnolog	gy devel	opment,	Apply			
CO3: D	Demonst	rate fou	indatio	nal liter	acy in c	lesignir	ng gami	ng syst	ems			Apply			
CO4: C	Categori	ze the b	enefits	/shortco	mings	of avail	able im	mersiv	e techno	ology pl	atforms.	Analyze			
СО5: Т	o apply	the VF	conce	pts to va	arious a	pplicat	ions					Apply			
								PROG	GRAM	ME SPI	ECIFIC (IES		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	S	М	L	-	М	-	-	-	-	-	-	М	Μ	М	М
CO2	S	М	L	L	М	-	-	-	-	-	-	L	Μ	М	М
CO3	S	М	L	-	М	-	-	-	-	-	-	М	Μ	М	М
CO4	S	L	L	L	М	-	-	-	-	-	-	М	Μ	М	Μ
CO5	S	M	L	-	М	-	-	-	-	-	-	L	Μ	Μ	-
S- Stro	ng; M-N	Aedium	i; L-Lov	W											

SYLLABUS INTRODUCTION

Virtual Reality & Virtual Environment: Introduction – Computer graphics – Real time computer graphics – Flight Simulation – Virtual environments –requirement – benefits of virtual reality- **3D Computer Graphics**: Introduction – The Virtual world space – positioning the virtual observer – the perspective projection – human vision – stereo perspective projection – 3D clipping – Colour theory – Simple 3D modelling – Illumination models – Reflection models – Shading algorithms

GEOMETRIC MODELLING

Geometric Modelling: Introduction – From 2D to 3D – 3D space curves – 3D boundary representation - **Geometrical Transformations**: Introduction – Frames of reference – Modelling transformations – Instances – Picking – Flying – Scaling the VE – Collision detection - **A Generic VR system**: Introduction – The virtual environment – the Computer environment – VR Technology – Model of interaction – VR System

CONTENT CREATION AND INTERACTION ISSUES

Gestalt perceptual organization - real world content - field of view - paradigm shift from real environment to virtual environment - reusing existing content - transition to VR content Human factors : Direct Vs Indirect Interaction - Modes and flow - Input device characteristics - viewpoint and control patterns.

DESIGN ISSUES

Optimizing performance - optimizing target hardware and software - **VR Hardware** : Introduction – sensor hardware – Head-coupled displays –Aquatic hardware – Integrated VR systems-**VR Software**: Introduction – Modelling virtual world –Physical simulation- VR toolkits - multiplayer environment - multiplayer networking architecture.

APPLICATION

Engineering-Entertainment-Science-Training-classroom.

TEXT BOOKS

1. John Vince, "Virtual Reality Systems", Pearson Education Asia, 2002

2. Jason Jerald, "The VR book: Human centered design for virtual reality", CRC Press, 2015

REFERENCES

1. Adams, "Visualizations of Virtual Reality", Tata McGraw Hill, 2000.

2. Grigore C. Burdea, Philippe Coiffet, "Virtual Reality Technology", WileyInterscience, 1 Edition, 1994.

3. William R. Sherman, Alan B. Craig, "Understanding Virtual Reality: Interface, Application, and Design", Morgan Kaufmann, 1st Edition, 2002.

4. Jonathan Linowes, "Unity Virtual Reality Projects- Explore the world of virtual reality by building immersive and fun VR Projects using Unity 3D", Packt Publishing, 2015.

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	S. Muthuselvan	Assistant Professor	CSE	muthuselvan@avit.ac.in
2	T.Geetha	Assistant Professor	CSE	geetha@vmkvec.edu.in

170	CSEC30			U	NIX IN	TERN	ALS				Category	L	Т	Р	Cr	edit
											EC	3	0	0		3
PREAMBLE This talk is a brief guide to UNIX programming languages, tools and concepts. It is aimed at programming novices or programmers migrating from a Windows system. The aim is to introduce you to the concepts, the possibilities and the tools used in Unix programming.																
PREREQUISITE NIL																
COURSE OBJECTIVES																
1	To understand the design of the UNIX operating system															
2	To be	come fa	amiliar	with the	e variou	s data s	structure	es used								
COUR	COURSE OUTCOMES															
On the	success	ful con	pletion	of the	course,	student	s will b	e able t	0							
СО1: Т	`o learn	The ba	sic Uniz	x opera	ting sys	tems ar	nd its ba	asic con	nmands	•		Understa	and			
СО2: Т	o analy	ze the b	ouffers a	and ker	nel repr	esentat	ion.					Analyze				
СО3: Т	o analy	ze the U	UNIX s	ystem s	tructure	e, systei	n calls.					Analyze	:			
СО4: Т	'o under	stand U	JNIX se	egmenta	ation, sc	chedulii	ng, pagi	ng.				Analyze				
MAPPING WITH PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES																
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PS01	PS	02	PSO3
CO1	S	Μ	L	L	М	-	-	-	-	-	-	Μ	-	-		М
CO2	S	М	L	L	М	-	-	-	-	-	-	М	Μ	-		М
CO3	S	М	L	-	L	-	-	-	-	-	-	М	Μ	-		М
CO4	S	M	L	L	М	-	-	-	-	-	-	Μ	Μ	-	-	М
S- Stro	ng; M-N	Aedium	n; L-Lov	W												

SYLLABUS INTRODUCTION

General Review of the System-History-System structure-User Perspective-Operating System Services- Assumptions About Hardware. Introduction to the Kernel-Architecture System Concepts-Data Structures- System Administration **DISK BLOCKS**

The Buffer Cache-Headers-Buffer Pool-Buffer Retrieval-Reading and Writing Disk Blocks - Advantages and Disadvantages. Internal Representation of Files-Inodes- Structure-Directories-Path Name to Inode- Super Block-Inode Assignment-Allocation of Disk Blocks -Other File Types

FILE SYSTEM

System Calls for the File System-Open-Read-Write-Lseek-Close-Create-Special files Creation -Change Directory and Change Root-Change Owner and Change Mode-Stat- Fstat-Pipes-Dup-Mount-Unmount-Link-Unlink-File System Abstraction-Maintenance.

PROCESS MANAGEMENT

The System Representation of Processes-States-Transitions-System Memory-Context of a Process-Saving the Context-Manipulation of a Process Address Space-Sleep Process Control-signals-Process Termination-Awaiting-Invoking other Programs-The Shell-System Boot and the INIT Process.

MEMORY MANAGEMENT

Memory Management Policies-Swapping-Demand Paging-a Hybrid System-I/O Subsystem-Driver Interfaces-Disk Drivers-Terminal Drivers.

TEXT BOOKS

1. Maurice J. Bach, "The Design of the Unix Operating System", Pearson Education 2002.

REFERENCES

1. UreshVahalia, "UNIX Internals: The New Frontiers", Prentice Hall, 2000.

2. John Lion, "Lion's Commentary on UNIX", 6th edition, Peer-to-Peer Communications, 2004.

3. Daniel P. Bovet & Marco Cesati, "Understanding the Linux Kernel", O'REILLY, Shroff Publishers & Distributors Pvt. Ltd, 2000.

4. M. Beck et al, "Linux Kernel Programming

S. No.	Name of the Faculty	Designation	Department	Mail ID
1	Mr. S. Muthuselvan	Assitant Professor (G- II)	CSE	muthuselvan@avit.ac.in
2	V.Amirthalingam	Associate Professor	CSE	Amirthalingam@vmkvec.edu.in